日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓的長軸長為2a,焦點(diǎn)是F1(-
          3
          ,0),F2(
          3
          ,0)
          ,點(diǎn)F1到直線x=-
          a2
          3
          的距離為
          3
          3
          ,過點(diǎn)F2且傾斜角為銳角的直線l與橢圓交于A,B兩點(diǎn),使得
          BF2
          =3
          F2A

          (1)求橢圓的方程;
          (2)求直線l的方程.
          分析:(1)首先由點(diǎn)F1到直線x=-
          a2
          3
          的距離為
          3
          3
          列式求出a2的值,然后利用條件b2=a2-c2求出b2,則橢圓的方程可求;
          (2)設(shè)出直線l與橢圓兩個(gè)交點(diǎn)A,B的坐標(biāo),由
          BF2
          =3
          F2A
          得到兩個(gè)交點(diǎn)坐標(biāo)的關(guān)系式,把兩個(gè)交點(diǎn)的坐標(biāo)代入橢圓方程后可求其中一個(gè)交點(diǎn)的坐標(biāo),由兩點(diǎn)式求出直線l的斜率,則直線l的方程可求.
          解答:解:(1)∵F1到直線x=-
          a2
          3
          的距離為
          3
          3
          ,∴|-
          3
          +
          a2
          3
          |=
          3
          3
          a2=4

          而c2=3,∴b2=a2-c2=4-3=1,所求橢圓的方程為
          x2
          4
          +y2=1

          (2)設(shè)A(x1,y1),B(x2,y2),不妨設(shè)A為第一象限的點(diǎn),且F2(
          3
          ,0)
          ,
          BF2
          =3
          F2A
          ,∴
          3
          -x2=3(x1-
          3
          )
          0-y2=3(y1-0)
          x2=4
          3
          -3x1
          y2=-3y1
          ,
          又∵A,B在橢圓
          x2
          4
          +y2=1
          上,∴
          x12+4y12=4
          (4
          3
          -3x1)2+4(-3y1)2=4
          x1=
          10
          3
          3
          y1=
          2
          3
          3
          (取正值),
          ∴l(xiāng)的斜率為k=
          2
          3
          3
          -0
          10
          3
          3
          -
          3
          =
          2

          ∴l(xiāng)的方程為y=
          2
          (x-
          3
          )
          ,即
          2
          x-y-
          6
          =0
          點(diǎn)評(píng):本題考查了橢圓標(biāo)準(zhǔn)方程的求法,考查了直線和圓錐曲線的交點(diǎn)問題,解答此題的關(guān)鍵是利用向量找到兩交點(diǎn)坐標(biāo)的關(guān)系,考查了學(xué)生的運(yùn)算能力,訓(xùn)練了直線方程的點(diǎn)斜式,是中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:2014屆湖南長沙高二上第一學(xué)月理科數(shù)學(xué)試卷(解析版) 題型:解答題

          已知橢圓的長軸長為,焦點(diǎn)是,點(diǎn)到直線的距離為,過點(diǎn)且傾斜角為銳角的直線與橢圓交于兩點(diǎn),使得.

          (1)求橢圓的方程;(2)求直線的方程.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市西城區(qū)(南區(qū))高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          已知橢圓的長軸長為4.
          (1)若以原點(diǎn)為圓心、橢圓短半軸為半徑的圓與直線y=x+2相切,求橢圓焦點(diǎn)坐標(biāo);
          (2)若點(diǎn)P是橢圓C上的任意一點(diǎn),過原點(diǎn)的直線L與橢圓相交于M,N兩點(diǎn),記直線PM,PN的斜率分別為kPM,kPN,當(dāng)時(shí),求橢圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濟(jì)寧市汶上一中高二(下)3月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          已知橢圓的長軸長為4.
          (1)若以原點(diǎn)為圓心、橢圓短半軸為半徑的圓與直線y=x+2相切,求橢圓焦點(diǎn)坐標(biāo);
          (2)若點(diǎn)P是橢圓C上的任意一點(diǎn),過原點(diǎn)的直線L與橢圓相交于M,N兩點(diǎn),記直線PM,PN的斜率分別為kPM,kPN,當(dāng)時(shí),求橢圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市西城區(qū)(南區(qū))高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          已知橢圓的長軸長為4.
          (1)若以原點(diǎn)為圓心、橢圓短半軸為半徑的圓與直線y=x+2相切,求橢圓焦點(diǎn)坐標(biāo);
          (2)若點(diǎn)P是橢圓C上的任意一點(diǎn),過原點(diǎn)的直線L與橢圓相交于M,N兩點(diǎn),記直線PM,PN的斜率分別為kPM,kPN,當(dāng)時(shí),求橢圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年山東省濟(jì)南市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

          已知橢圓的長軸長為4.
          (1)若以原點(diǎn)為圓心、橢圓短半軸為半徑的圓與直線y=x+2相切,求橢圓焦點(diǎn)坐標(biāo);
          (2)若點(diǎn)P是橢圓C上的任意一點(diǎn),過原點(diǎn)的直線L與橢圓相交于M,N兩點(diǎn),記直線PM,PN的斜率分別為kPM,kPN,當(dāng)時(shí),求橢圓的方程.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案