日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓的長軸長為4.
          (1)若以原點為圓心、橢圓短半軸為半徑的圓與直線y=x+2相切,求橢圓焦點坐標;
          (2)若點P是橢圓C上的任意一點,過原點的直線L與橢圓相交于M,N兩點,記直線PM,PN的斜率分別為kPM,kPN,當時,求橢圓的方程.
          【答案】分析:(1)由,再結合橢圓的長軸的長為4,進而根據(jù)橢圓中a,b,c的關系得到焦點的坐標.
          (2)由題意可設M(x,y),N(-x,-y),P(x,y),所以有,兩式相減得:,再結合兩條直線的斜率與題中條件可得答案.
          解答:解:(1)由…(2分)
          又因為2a=4,
          所以a=2,又a2=4,b2=2…(4分)
          所以c2=a2-b2=2,
          …(6分)
          (2)由于過原點的直線L與橢圓相交的兩點M,N交于坐標原點對稱
          不妨設:M(x,y),N(-x,-y),P(x,y)
          因為M,N,P在橢圓上,
          所以它們滿足橢圓方程,即有
          兩式相減得:.…(8分)
          由題意它們的斜率存在,則…(10分)

          故所求橢圓的方程為…(12分)
          點評:本題主要考查了橢圓的標準方程,涉及了橢圓與直線的位置關系,以及直線的斜率等問題,綜合性強.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          (13分)已知橢圓的長軸長為4,A,B,C是橢圓上的三點,點A是長軸的一個頂點,BC過橢圓的中心O,且,如圖.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)如果橢圓上的兩點P,Q使的平分線垂直于OA,是否總存在實數(shù),使得?請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (本小題滿分12分)已知橢圓的長軸長為4。   (1)若以原點為圓心、橢圓短半軸為半徑的圓與直線相切,求橢圓焦點坐標;   (2)若點P是橢圓C上的任意一點,過原點的直線L與橢圓相交于M,N兩點,記直線PM,PN的斜率分別為,當時,求橢圓的方程。

          查看答案和解析>>

          科目:高中數(shù)學 來源:2013屆河北省高二下學期期中文科數(shù)學A試卷(解析版) 題型:解答題

          已知橢圓的長軸長為4,離心率為,分別為其左右焦點.一動圓過點,且與直線相切.

          (Ⅰ)(。┣髾E圓的方程; (ⅱ)求動圓圓心的軌跡方程;

          (Ⅱ) 在曲線上有兩點,橢圓上有兩點,滿足共線,

          共線,且,求四邊形面積的最小值.

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011-2012學年遼寧省、莊河高中高三上學期期末理科數(shù)學 題型:解答題

          (本小題滿分12分)

          已知橢圓的長軸長為4,離心率為,分別為其左右焦點.一動圓過點,且與直線相切.

          (Ⅰ)(。┣髾E圓的方程; (ⅱ)求動圓圓心軌跡的方程;

          (Ⅱ) 在曲線上有兩點,橢圓上有兩點,滿足共線,共線,且,求四邊形面積的最小值.

           

           

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2013年安徽省蕪湖十二中高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

          已知橢圓的長軸長為4,且點在該橢圓上.
          (1)求橢圓的方程.
          (2)過橢圓右焦點的直線l交橢圓于A、B兩點,若∠AOB是直角,其中O是坐標原點,求直線l的方程.

          查看答案和解析>>

          同步練習冊答案