日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù),(其中m為常數(shù)).
          (1) 試討論在區(qū)間上的單調(diào)性;
          (2) 令函數(shù).當(dāng)時,曲線上總存在相異兩點、,使得過、點處的切線互相平行,求的取值范圍.

          (1)
           
          (2)的取值范圍為.

          解析試題分析:(1) 求函數(shù)的導(dǎo)數(shù),對討論用導(dǎo)函數(shù)的正負判斷單調(diào)性;(2)在導(dǎo)數(shù)相等得,由不等式性質(zhì)可得恒成立,所以,恒成立,令,求其最小值,即的最大值.
          試題解析:(1)                 1分


           
                5分
          (2)由題意,可得,且
                    7分
          ,由不等式性質(zhì)可得恒成立,又
            恒成立
          ,
          恒成立
          上單調(diào)遞增,∴             11分
                                              12分
          從而“恒成立”等價于“
          的取值范圍為                          13分
          考點:1.利用導(dǎo)數(shù)求函數(shù)的單調(diào)性;2.導(dǎo)數(shù)的幾何意義;3.利用導(dǎo)數(shù)求函數(shù)的最值.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)
          (1)若,求處的切線方程;
          (2)若上是增函數(shù),求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=x2 mlnx
          (1)若函數(shù)f(x)在(,+∞)上是遞增的,求實數(shù)m的取值范圍;
          (2)當(dāng)m=2時,求函數(shù)f(x)在[1,e]上的最大值和最小值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),()在處取得最小值.
          (Ⅰ)求的值;
          (Ⅱ)若處的切線方程為,求證:當(dāng)時,曲線不可能在直線的下方;
          (Ⅲ)若,()且,試比較的大小,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=ln-a+x(a>0).
          (Ⅰ)若,求f(x)圖像在x=1處的切線的方程;
          (Ⅱ)若的極大值和極小值分別為m,n,證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù).
          (Ⅰ)若,求函數(shù)在區(qū)間上的最值;
          (Ⅱ)若恒成立,求的取值范圍. (注:是自然對數(shù)的底數(shù))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)
          (Ⅰ)討論函數(shù)的單調(diào)性;
          (Ⅱ)若,證明:時,成立

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知二次函數(shù)h(x)=ax2+bx+c(其中c<3),其導(dǎo)函數(shù)的圖象如圖,f(x)=6lnx+h(x).

          ①求f(x)在x=3處的切線斜率;
          ②若f(x)在區(qū)間(m,m+)上是單調(diào)函數(shù),求實數(shù)m的取值范圍;
          ③若對任意k∈[-1,1],函數(shù)y=kx(x∈(0,6])的圖象總在函數(shù)y=f(x)圖象的上方,求c的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù) ().
          (Ⅰ)求的單調(diào)區(qū)間;
          (Ⅱ)試通過研究函數(shù))的單調(diào)性證明:當(dāng)時,;
          (Ⅲ)證明:當(dāng),且均為正實數(shù),  時,

          查看答案和解析>>

          同步練習(xí)冊答案