已知二次函數(shù)h(x)=ax2+bx+c(其中c<3),其導(dǎo)函數(shù)的圖象如圖,f(x)=6lnx+h(x).
①求f(x)在x=3處的切線(xiàn)斜率;
②若f(x)在區(qū)間(m,m+)上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
③若對(duì)任意k∈[-1,1],函數(shù)y=kx(x∈(0,6])的圖象總在函數(shù)y=f(x)圖象的上方,求c的取值范圍.
①0; ②;③
解析試題分析:①根據(jù)圖像求出一次導(dǎo)函數(shù)的解析式,那么函數(shù)的導(dǎo)函數(shù)就很容易得到了,所求的切線(xiàn)斜率即是其所對(duì)應(yīng)的的導(dǎo)函數(shù)值;②根據(jù)函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系求出函數(shù)的三個(gè)單調(diào)區(qū)間,使得所給的區(qū)間在任何一個(gè)單調(diào)區(qū)間內(nèi)即可求出未知數(shù)的取值范圍;③由已知條件先導(dǎo)出和
有關(guān)的不等式,將
放在不等式的一邊,那么就有
的最小值也要大于等于不等式另一邊式子的最大值,才能保證不等式恒成立,由函數(shù)的單調(diào)性和導(dǎo)數(shù)的關(guān)系求最值即可.
試題解析:①由已知得,其圖像如圖所示過(guò)點(diǎn)
和
,
則有,解得
,所以
,
所以,則
即
在
處的切線(xiàn)斜率為0; 3分
②由已知得,
令,得
,列表如下:
要使f(x)在x (0,1) 1 (1, 3) 3 (3,+∞) + 0 - 0 + ..f(x) 極大值 極小值 上是單調(diào)函數(shù),則區(qū)間
必須完全含在任意一個(gè)單調(diào)區(qū)間內(nèi), 5分
所以有或
或
,
所以m的取值范圍為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù).
(Ⅰ)若時(shí),求
的單調(diào)區(qū)間;
(Ⅱ)時(shí),
有極值,且對(duì)任意
時(shí),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),(其中m為常數(shù)).
(1) 試討論在區(qū)間
上的單調(diào)性;
(2) 令函數(shù).當(dāng)
時(shí),曲線(xiàn)
上總存在相異兩點(diǎn)
、
,使得過(guò)
、
點(diǎn)處的切線(xiàn)互相平行,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題13分)已知函數(shù)
(1)若實(shí)數(shù)求函數(shù)
在
上的極值;
(2)記函數(shù),設(shè)函數(shù)
的圖像
與
軸交于
點(diǎn),曲線(xiàn)
在
點(diǎn)處的切線(xiàn)與兩坐標(biāo)軸所圍成圖形的面積為
則當(dāng)
時(shí),求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,將一矩形花壇擴(kuò)建成一個(gè)更大的矩形花壇
,要求
在
的延長(zhǎng)線(xiàn)上,
在
的延長(zhǎng)線(xiàn)上,且對(duì)角線(xiàn)
過(guò)
點(diǎn).已知
米,
米。
(1)設(shè)(單位:米),要使花壇
的面積大于32平方米,求
的取值范圍;
(2)若(單位:米),則當(dāng)
,
的長(zhǎng)度分別是多少時(shí),花壇
的面積最大?并求出最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(Ⅰ)若,求
的極大值;
(Ⅱ)若在定義域內(nèi)單調(diào)遞減,求滿(mǎn)足此條件的實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù) (
R),且該函數(shù)曲線(xiàn)
在
處的切線(xiàn)與
軸平行.
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)證明:當(dāng)時(shí),
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)(
).
(1)當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)時(shí),
取得極值,求函數(shù)
在
上的最小值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)F(x )=x2+aln(x+1)
(I)若函數(shù)y=f(x)在區(qū)間[1,+∞)上是單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(II)若函數(shù)y=f(x)有兩個(gè)極值點(diǎn)x1,x2且,求證:
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com