【題目】從分別寫有的
張卡片中隨機(jī)抽取
張,放回后再隨機(jī)抽取
張,則抽得的第一張卡片,上的數(shù)不大于第二張卡片上的數(shù)的概率為( )
A. B.
C.
D.
【答案】D
【解析】
分析:基本事件總數(shù)n=5×5=25,利用列舉法求出抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)包含的基本事件有15個(gè),由此能求出抽得的第一張卡片上的數(shù)不大于第二張卡片上的數(shù)的概率.
詳解:從分別寫有1,2,3,4,5的5張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,
基本事件總數(shù)n=5×5=25,
抽得的第一張卡片上的數(shù)不大于第二張卡片上的數(shù)包含的基本事件有15個(gè),分別為:
(1,2),(2,3),(1,3),(3,4),(2,4),(1,4),(4,5),(3,5),
(2,5),(1,5),(5,6),(4,6),(3,6),(2,6),(1,6),
則抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率為p=
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某公園摩天輪的半徑為,圓心距地面的高度為
,摩天輪做勻速轉(zhuǎn)動(dòng),每
轉(zhuǎn)一圈,摩天輪上的點(diǎn)
的起始位置在最低點(diǎn)處.
(1)已知在時(shí)刻時(shí)
距離地面的高度
,(其中
),求
時(shí)
距離地面的高度;
(2)當(dāng)離地面以上時(shí),可以看到公園的全貌,求轉(zhuǎn)一圈中有多少時(shí)間可以看到公園的全貌?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在底面是菱形的四棱錐P﹣ABCD中, E、F分別為PD、AB的中點(diǎn),△PAB為等腰直角三角形,PA⊥平面ABCD,PA=1.
(1)求證:直線AE∥平面PFC;
(2)求證:PB⊥FC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為雙曲線
:
的右焦點(diǎn),過(guò)坐標(biāo)原點(diǎn)的直線依次與雙曲線
的左、右支交于點(diǎn)
,若
,
,則該雙曲線的離心率為( )
A. B.
C.
D.
【答案】B
【解析】,設(shè)雙曲線的左焦點(diǎn)為
,連接
,由對(duì)稱性可知,
為矩形,且
,故
,故選B.
【 方法點(diǎn)睛】本題主要考查雙曲線的定義及離心率,屬于難題.離心率的求解在圓錐曲線的考查中是一個(gè)重點(diǎn)也是難點(diǎn),一般求離心率有以下幾種情況:①直接求出,從而求出
;②構(gòu)造
的齊次式,求出
;③采用離心率的定義以及圓錐曲線的定義來(lái)求解;④根據(jù)圓錐曲線的統(tǒng)一定義求解.
【題型】單選題
【結(jié)束】
12
【題目】點(diǎn)到點(diǎn)
,
及到直線
的距離都相等,如果這樣的點(diǎn)恰好只有一個(gè),那么實(shí)數(shù)
的值是( )
A. B.
C.
或
D.
或
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)= ,則函數(shù)y=|f(x)|﹣
的零點(diǎn)個(gè)數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面
是平行四邊形,
,側(cè)面
底面
,
,
,
,
分別為
,
的中點(diǎn),點(diǎn)
在線段
上.
(1)求證: 平面
;
(2)若直線與平面
所成的角和直線
與平面
所成的角相等,求
的值.
【答案】(1)證明見(jiàn)解析;(2) .
【解析】試題分析:
(Ⅰ)在平行四邊形中,由條件可得
,進(jìn)而可得
。由側(cè)面
底面
,得
底面
,故得
,所以可證得
平面
.(Ⅱ)先證明平面
平面
,由面面平行的性質(zhì)可得
平面
.(Ⅲ)建立空間直角坐標(biāo)系,通過(guò)求出平面的法向量,根據(jù)線面角的向量公式可得
。
試題解析:
(Ⅰ)證明:在平行四邊形中,
∵,
,
,
∴,
∴,
∵,
分別為
,
的中點(diǎn),
∴,
∴,
∵側(cè)面底面
,且
,
∴底面
,
又底面
,
∴,
又,
平面
,
平面
,
∴平面
.
(Ⅱ)證明:∵為
的中點(diǎn),
為
的中點(diǎn),
∴,
又平面
,
平面
,
∴平面
,
同理平面
,
又,
平面
,
平面
,
∴平面平面
,
又平面
,
∴平面
.
(Ⅲ)解:由底面
,
,可得
,
,
兩兩垂直,
建立如圖空間直角坐標(biāo)系,
則,
,
,
,
,
,
所以,
,
,
設(shè),則
,
∴,
,
易得平面的法向量
,
設(shè)平面的法向量為
,則:
由,得
,
令,得
,
∵直線與平面
所成的角和此直線與平面
所成的角相等,
∴,即
,
∴,
解得或
(舍去),
故.
點(diǎn)睛:用向量法確定空間中點(diǎn)的位置的方法
根據(jù)題意建立適當(dāng)?shù)目臻g直角坐標(biāo)系,由條件確定有關(guān)點(diǎn)的坐標(biāo),運(yùn)用共線向量用參數(shù)(參數(shù)的范圍要事先確定)確定出未知點(diǎn)的坐標(biāo),根據(jù)向量的運(yùn)算得到平面的法向量或直線的方向向量,根據(jù)所給的線面角(或二面角)的大小進(jìn)行運(yùn)算,進(jìn)而求得參數(shù)的值,通過(guò)與事先確定的參數(shù)的范圍進(jìn)行比較,來(lái)判斷參數(shù)的值是否符合題意,進(jìn)而得出點(diǎn)是否存在的結(jié)論。
【題型】解答題
【結(jié)束】
21
【題目】如圖,橢圓上的點(diǎn)到左焦點(diǎn)的距離最大值是
,已知點(diǎn)
在橢圓上,其中
為橢圓的離心率.
(1)求橢圓的方程;
(2)過(guò)原點(diǎn)且斜率為的直線交橢圓于
、
兩點(diǎn),其中
在第一象限,它在
軸上的射影為點(diǎn)
,直線
交橢圓于另一點(diǎn)
.證明:對(duì)任意的
,點(diǎn)
恒在以線段
為直徑的圓內(nèi).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的前
項(xiàng)和為
,且對(duì)任意正整數(shù)
,滿足
.
(1)求數(shù)列的通項(xiàng)公式.
(2)設(shè),求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn,且=9,S6=60.
(I)求數(shù)列{an}的通項(xiàng)公式;
(II)若數(shù)列{bn}滿足bn+1﹣bn=(n∈N+)且b1=3,求數(shù)列
的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等比數(shù)列中,
,且
.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前
項(xiàng)和
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com