(本小題滿分12分)
已知以原點為中心,F(

,0)為右焦點的橢圓C,過點F垂直于

軸的弦AB長為4.
(1).求橢圓C的標準方程.
(2).設(shè)M、N為橢圓C上的兩動點,且

,點P為橢圓C的右準線與

軸的交點,求

的取值

范圍.
解:(1).設(shè)橢圓C的標準方程.為

,則

即



橢圓C的標準方程為

(2).設(shè)直線MN方程為

,

,則

得


,

由

得

,即


,


,此時

,橢圓C的右準線方程為

,則P(

,0)

=

=

=

由

,令

, 則

=
=




當

時

="0"
當

時,0<

當

時,0>





當

軸時,設(shè)M

、N

則


=

=

=

故

的取值范圍是

練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:填空題

是橢圓

的左、右焦點,點

在橢圓上運動,則

的最大值是_____
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知平面直角坐標系中點F(1,0)和直線

,動圓M過點F且與直線

相切。
(1)求M的軌跡L的方程;
(2)過點F作斜率為1的直線

交曲線L于A、B兩點,求|AB|的值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知

+

=1的焦點F
1、F
2,在直線
l:
x+y-6=0上找一點M,求以F
1、F
2為焦點,通過點M且長軸最短的橢圓方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知橢圓的一個頂點和一個焦點分別是直線x+3y-6=0與兩坐標軸的交點,則橢圓的標準方程為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分13分)已知在直角坐標平面XOY中,有一個不在Y軸上的動點P(x,y),到定點F(0,

)的距離比它到X軸的距離多

,記P點的軌跡為曲線C
(I)求曲線C的方程;
(II)已知點M在Y軸上,且過點F的直線

與曲線C交于A、B兩點,若

為正三角形,求M點的坐標與直線

的方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題12分)已知橢圓的中心在原點,左焦點為

,右頂點為

,設(shè)點

.(1)求該橢圓的標準方程;
(2)若

是橢圓上的動點,過P點向橢圓的長軸做垂線,垂足為Q求線段PQ的中點

的軌跡方程;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
.已知橢圓的中心在原點,焦點在坐標軸上,與過點P(1,2)且斜率為-2的直線

相交所得的弦恰好被P平分,則此橢圓的離心率是
;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知A
1,A
2,B是橢圓

=1(a>b>0)的頂點(如圖),直線
l與橢圓交于異于頂點的P,Q兩點,且
l∥A
2B,若橢圓的離心率是

,且|A
2B|=

。
(1)求此橢圓的方程;
(2)設(shè)直線A
1P和直線BQ的傾斜角分別為α,β,試判斷α+β是否為定值?若是,求出此定值;若不是,說明理由。

查看答案和解析>>