日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù).

          (1)求的圖像在點處的切線方程;

          (2)求在區(qū)間上的取值范圍.

          【答案】(1);(2).

          【解析】試題分析:(1)先求出,再求出的值可得切點坐標,求出的值,可得切線斜率,利用點斜式可得曲線在點處的切線方程;(2)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性可得當時, 遞增;當遞減;可得所以, .

          試題解析:(1),

          所以

          .又,所以的圖象在點處的切線方程為.

          (2)由(1)知.

          因為都是區(qū)間上的增函數(shù),所以上的增函數(shù).

          ,所以當時, ,即,此時遞增;

          ,即,此時遞減;

          , , .

          所以, .

          所以在區(qū)間的取值范圍為

          【方法點晴】本題主要考查利用導(dǎo)數(shù)求曲線切線方程以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,屬于難題.求曲線切線方程的一般步驟是:(1)求出處的導(dǎo)數(shù),即在點 出的切線斜率(當曲線處的切線與軸平行時,在 處導(dǎo)數(shù)不存在,切線方程為);(2)由點斜式求得切線方程.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】設(shè)函數(shù)是定義在上的偶函數(shù),且對任意的恒有,已知當,則①函數(shù)的周期是;②上是增函數(shù),在上是減函數(shù);③的最大值是,最小值是;④當時, ,其中所有真命題的序號是__________

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】對于定義域為D的函數(shù),若存在區(qū)間,使得同時滿足,①上是單調(diào)函數(shù),②當的定義域為時,的值域也為,則稱區(qū)間為該函數(shù)的一個和諧區(qū)間

          1)求出函數(shù)的所有和諧區(qū)間;

          2)函數(shù)是否存在和諧區(qū)間?若存在,求出實數(shù)ab的值;若不存在,請說明理由

          3)已知定義在上的函數(shù)和諧區(qū)間,求正整數(shù)k取最小值時實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知在平面直角坐標系中,橢圓的方程為,以為極點, 軸非負半軸為極軸,取相同的長度單位建立極坐標系,直線的極坐標方程為.

          (1)求直線的直角坐標方程和橢圓的參數(shù)方程;

          (2)設(shè)為橢圓上任意一點,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系xoy中,曲線C1的參數(shù)方程為以原點O為極點,x軸正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為

          1)求曲線C1C2的直角坐標方程;

          2)當C1C2有兩個公共點時,求實數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓的長軸長為4,離心率為.

          (1)求橢圓的標準方程;

          (2)過右焦點的直線交橢圓于兩點,過點作直線的垂線,垂足為,連接,當直線的傾斜角發(fā)生變化時,直線軸是否相交于定點?若是,求出定點坐標,否則,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知表1和表2是某年部分日期的天安門廣場升旗時刻表:

          表1:某年部分日期的天安門廣場升旗時刻表

          日期

          升旗時刻

          日期

          升旗時刻

          日期

          升旗時刻

          日期

          升旗時刻

          1月1日

          7:36

          4月9日

          5:46

          7月9日

          4:53

          10月8日

          6:17

          1月21日

          7:11

          4月28日

          5:19

          7月27日

          5:07

          10月26日

          6:36

          2月10日

          7:14

          5月16日

          4:59

          8月14日

          5:24

          11月13日

          6:56

          3月2日

          6:47

          6月3日

          4:47

          9月2日

          5:42

          12月1日

          7:16

          3月22日

          6:15

          6月22日

          4:46

          9月20日

          5:50

          12月20日

          7:31

          表2:某年1月部分日期的天安門廣場升旗時刻表

          日期

          升旗時刻

          日期

          升旗時刻

          日期

          升旗時刻

          2月1日

          7:23

          2月11日

          7:13

          2月21日

          6:59

          2月3日

          7:22

          2月13日

          7:11

          2月23日

          6:57

          2月5日

          7:20

          2月15日

          7:08

          2月25日

          6:55

          2月7日

          7:17

          2月17日

          7:05

          2月27日

          6:52

          2月9日

          7:15

          2月19日

          7:02

          2月28日

          6:49

          (1)從表1的日期中隨機選出一天,試估計這一天的升旗時刻早于7:00的概率;

          (2)甲、乙二人各自從表2的日期中隨機選擇一天觀看升旗,且兩人的選擇相互獨立,記為這兩人中觀看升旗的時刻早于7:00的人數(shù),求的 分布列和數(shù)學期望;

          (3)將表1和表2的升旗時刻化為分數(shù)后作為樣本數(shù)據(jù)(如7:31化為),記表2中所有升旗時刻對應(yīng)數(shù)據(jù)的方差為,表1和表2中所有升旗時刻對應(yīng)數(shù)據(jù)的方差為,判斷的大小(只需寫出結(jié)論).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】銷售甲、乙兩種商品所得利潤分別是萬元,它們與投入資金 萬元的關(guān)系分別為,(其中都為常數(shù)),函數(shù)對應(yīng)的曲線、如圖所示.

          1)求函數(shù)的解析式;

          2)若該商場一共投資4萬元經(jīng)銷甲、乙兩種商品,求該商場所獲利潤的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設(shè)命題:實數(shù)滿足,其中,命題:實數(shù)滿足.

          (1),且為真,求實數(shù)的取值范圍;

          (2)若的充分不必要條件,求實數(shù)的取值范圍.

          查看答案和解析>>

          同步練習冊答案