日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】橢圓的中心在原點(diǎn),焦點(diǎn)分別在軸與軸上,它們有相同的離心率,并且的短軸為的長(zhǎng)軸,的四個(gè)焦點(diǎn)構(gòu)成的四邊形面積是.

          (1)求橢圓的方程;

          (2)設(shè)是橢圓上非頂點(diǎn)的動(dòng)點(diǎn),與橢圓長(zhǎng)軸兩個(gè)頂點(diǎn),的連線分別與橢圓交于,點(diǎn).

          (i)求證:直線斜率之積為常數(shù);

          (ii)直線與直線的斜率之積是否為常數(shù)?若是,求出該值;若不是,說明理由.

          【答案】(1),.(2)(i) 見解析(ii).

          【解析】

          試題(1)橢圓離心率,又,所以,設(shè),則根據(jù)題中條件可設(shè),于是根據(jù)橢圓的對(duì)稱性可知,四個(gè)焦點(diǎn)構(gòu)成的四邊形為菱形,面積,解得,可以得到橢圓,;(2)(i)本問考查圓錐曲線中的定點(diǎn)、定值問題,分析題意,設(shè),而,,所以,,于是,又因?yàn)?/span>,代入上式易求;(ii)根據(jù)(i)問,可先證明為定值,再證明為定值,于是可以得到為定值,由于,,所以可以得為定值.

          試題解析:(1)依題意,設(shè),,由對(duì)稱性,四個(gè)焦點(diǎn)構(gòu)成的四邊形為菱形,且面積,解得:.

          所以橢圓,.

          (2)(i)設(shè),則,,.

          .

          所以:.

          直線斜率之積為常數(shù).

          (ii)設(shè),則.

          ,

          所以:,同理:,

          所以:,由,結(jié)合(i)有

          .

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,直線,圓,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.

          (1)求的極坐標(biāo)方程;

          (2)若直線的極坐標(biāo)方程為,設(shè)的交點(diǎn)為A,B,求的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)討論的單調(diào)性;

          (2)若曲線的一條切線方程為,

          (i)求的值;

          (ii)若時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率,且經(jīng)過點(diǎn),,,為橢圓的四個(gè)頂點(diǎn)(如圖),直線過右頂點(diǎn)且垂直于軸.

          (1)求該橢圓的標(biāo)準(zhǔn)方程;

          (2)上一點(diǎn)(軸上方),直線,分別交橢圓于,兩點(diǎn),若,求點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知O為坐標(biāo)原點(diǎn),拋物線Cy2=8x上一點(diǎn)A到焦點(diǎn)F的距離為6,若點(diǎn)P為拋物線C準(zhǔn)線上的動(dòng)點(diǎn),則|OP|+|AP|的最小值為( 。

          A. 4B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),將曲線經(jīng)過伸縮變換后得到曲線.在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

          1)說明曲線是哪一種曲線,并將曲線的方程化為極坐標(biāo)方程;

          2)已知點(diǎn)是曲線上的任意一點(diǎn),又直線上有兩點(diǎn),且,又點(diǎn)的極角為,點(diǎn)的極角為銳角.求:

          ①點(diǎn)的極角;

          面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,底面是菱形,,,,底面,,點(diǎn)在棱上,且

          (1)證明:面;

          (2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖空間幾何體中,,均為邊長(zhǎng)為的等邊三角形,平面平面,平面平面

          1)試在平面內(nèi)作一條直線,使得直線上任意一點(diǎn)的連線均與平面平行,并給出詳細(xì)證明;

          2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓與拋物線在第一象限的交點(diǎn)為,橢圓的左、右焦點(diǎn)分別為,其中也是拋物線的焦點(diǎn),且.

          1)求橢圓的方程;

          2)過的直線(不與軸重合)交橢圓兩點(diǎn),點(diǎn)為橢圓的左頂點(diǎn),直線分別交直線于點(diǎn),求證:為定值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案