日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 定義在R上的函數(shù)滿足:,且對于任意的,都有,則不等式的解集為           .
          (0,2)

          試題分析:設(shè)g(x)=f(x)-x,∵f′(x)<,∴g′(x)=f′(x)-<0,∴g(x)為減函數(shù),又f(1)=1,∴f(log2x)>,即g(log2x)=f(log2x)-log2x>=g(1)=f(1)-=g(log22),∴l(xiāng)og2x<log22,又y=log2x為底數(shù)是2的增函數(shù),∴0<x<2,則不等式的解集為(0,2).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          某出版社新出版一本高考復(fù)習(xí)用書,該書的成本為5元/本,經(jīng)銷過程中每本書需付給代理商m元(1≤m≤3)的勞務(wù)費,經(jīng)出版社研究決定,新書投放市場后定價為元/本(9≤≤11),預(yù)計一年的銷售量為萬本.
          (1)求該出版社一年的利潤(萬元)與每本書的定價的函數(shù)關(guān)系式;
          (2)當(dāng)每本書的定價為多少元時,該出版社一年的利潤最大,并求出的最大值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)的導(dǎo)數(shù)為,若函數(shù)的圖象關(guān)于直線對稱,且函數(shù)處取得極值.
          (I)求實數(shù)的值;
          (II)求函數(shù)的單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)
          (1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
          (2)當(dāng)函數(shù)自變量的取值區(qū)間與對應(yīng)函數(shù)值的取值區(qū)間相同時,這樣的區(qū)間稱為函數(shù)的保值區(qū)間.,試問函數(shù)上是否存在保值區(qū)間?若存在,請求出一個保值區(qū)間;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)
          (Ⅰ)若,求的極大值;
          (Ⅱ)若在定義域內(nèi)單調(diào)遞減,求滿足此條件的實數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          函數(shù)f(x)=x2-ln x的單調(diào)遞減區(qū)間為 (  ).
          A.(-1,1]B.(0,1]
          C.[1,+∞)D.(0,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知函數(shù)在區(qū)間上是增函數(shù),則實數(shù)的取值范圍是   

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知函數(shù)在(0, 1)上不是單調(diào)函數(shù),則實數(shù)的取值范圍為   _____.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          若函數(shù)上單調(diào)遞增,那么實數(shù)的取值范圍是(  )
          A.B.C.D.

          查看答案和解析>>

          同步練習(xí)冊答案