【題目】已知函數(shù)(
為實數(shù)常數(shù))
(1)當時,求函數(shù)
在
上的單調(diào)區(qū)間;
(2)當時,
成立,求證:
.
【答案】(1) 單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是
.(2)證明見解析
【解析】
(1)先求出函數(shù)的導(dǎo)函數(shù)
,再解不等式
與
,從而求出函數(shù)的單調(diào)區(qū)間;
(2)當時,由
等價于
恒成立,再分別討論:①當
時,②當
時,③當
時,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及最值從而得解.
解:(1)因為,所以
,
當時,由
得
,解得
,
由得
,解得
,
所以函數(shù)在
的單調(diào)遞增區(qū)間是
,單調(diào)遞減區(qū)間是
.
(2)當時,由
得
即恒成立(*),
設(shè),則
,由題可知
①當時,
,所以
在
上單調(diào)遞增,
,可知
且
時,
,使得
,可知(*)式不成立,則
不符合條件;
②當時,
,所以
在
上單調(diào)遞減,
,可知(*)式成立,則
符合條件,所以
成立;
③當時,由
得
,由
得
,
所以在
上單調(diào)遞增,可知
在
上單調(diào)遞減,
所以,由(*)式得
,
設(shè),則
,所以
在
上單調(diào)遞減,
而,
,可知
.
綜上所述,.
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中正確的是( )
A.先把高二年級的2000名學生編號:1到2000,再從編號為1到50的學生中隨機抽取1名學生,其編號為,然后抽取編號為
,
,
,…的學生,這種抽樣方法是分層抽樣法
B.線性回歸直線不一定過樣本中心
C.若一個回歸直線方程為,則變量
每增加一個單位時,
平均增加3個單位
D.若一組數(shù)據(jù)2,4,,8的平均數(shù)是5,則該組數(shù)據(jù)的方差也是5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形是正方形,
平面
,
,
,
,
,
分別為
,
,
的中點.
(1)求證: 平面
;
(2)求平面與平面
所成銳二面角的大;
(3)在線段上是否存在一點
,使直線
與直線
所成的角為
?若存在,求出線段
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:
的離心率為
,橢圓的四個頂點構(gòu)成的四邊形面積為
.
(1)求橢圓的方程;
(2)若是橢圓上的一點,過
且斜率等于
的直線與橢圓
交于另一點
,點
關(guān)于原點的對稱點為
.求
面積的最大值及取最大值時直線
的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年2月25日,第屆羅馬尼亞數(shù)學大師賽(簡稱
)于羅馬尼亞首都布加勒斯特閉幕,最終成績揭曉,以色列選手排名第一,而中國隊無一人獲得金牌,最好成績是獲得銀牌的第
名,總成績排名第
.而在分量極重的國際數(shù)學奧林匹克(
)比賽中,過去拿冠軍拿到手軟的中國隊,也已經(jīng)有連續(xù)
年沒有拿到冠軍了.人們不禁要問“中國奧數(shù)究竟怎么了?”,一時間關(guān)于各級教育主管部門是否應(yīng)該下達“禁奧令”成為社會熱點.某重點高中培優(yōu)班共
人,現(xiàn)就這
人“禁奧令”的態(tài)度進行問卷調(diào)查,得到如下的列聯(lián)表:
不應(yīng)下“禁奧令” | 應(yīng)下“禁奧令” | 合計 | |
男生 | 5 | ||
女生 | 10 | ||
合計 | 50 |
若采用分層抽樣的方法從人中抽出
人進行重點調(diào)查,知道其中認為不應(yīng)下“禁奧令”的同學共有
人.
(1)請將上面的列聯(lián)表補充完整,并判斷是否有的把握認為對下“禁奧令”的態(tài)度與性別有關(guān)?請說明你的理由;
(2)現(xiàn)從這人中抽出
名男生、
名女生,記此
人中認為不應(yīng)下“禁奧令”的人數(shù)為
,求
的分布列和數(shù)學期望.
參考公式與數(shù)據(jù):
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國神舟十一號載人飛船在酒泉衛(wèi)星發(fā)射中心成功發(fā)射,引起全國轟動.開學后,某校高二年級班主任對該班進行了一次調(diào)查,發(fā)現(xiàn)全班60名同學中,對此事關(guān)注的占,他們在本學期期末考試中的物理成績(滿分100分)如下面的頻率分布直方圖:
(1)求“對此事關(guān)注”的同學的物理期末平均分(以各區(qū)間的中點代表該區(qū)間的均值).
(2)若物理成績不低于80分的為優(yōu)秀,請以是否優(yōu)秀為分類變量,
①補充下面的列聯(lián)表:
物理成績優(yōu)秀 | 物理成績不優(yōu)秀 | 合計 | |
對此事關(guān)注 | |||
對此事不關(guān)注 | |||
合計 |
②是否有以上的把握認為“對此事是否關(guān)注”與物理期末成績是否優(yōu)秀有關(guān)系?
參考公式: ,其中
.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠有兩個車間生產(chǎn)同一種產(chǎn)品,第一車間有工人200人,第二車間有工人400人,為比較兩個車間工人的生產(chǎn)效率,采用分層抽樣的方法抽取工人,并對他們中每位工人生產(chǎn)完成一件產(chǎn)品的時間(單位:min)分別進行統(tǒng)計,得到下列統(tǒng)計圖表(按照[55,65),[65,75),[75,85),[85,95]分組).
分組 | 頻數(shù) |
[55,65) | 2 |
[65,75) | 4 |
[75,85) | 10 |
[85,95] | 4 |
合計 | 20 |
第一車間樣本頻數(shù)分布表
(Ⅰ)分別估計兩個車間工人中,生產(chǎn)一件產(chǎn)品時間小于75min的人數(shù);
(Ⅱ)分別估計兩車間工人生產(chǎn)時間的平均值,并推測哪個車間工人的生產(chǎn)效率更高?(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)
(Ⅲ)從第一車間被統(tǒng)計的生產(chǎn)時間小于75min的工人中,隨機抽取3人,記抽取的生產(chǎn)時間小于65min的工人人數(shù)為隨機變量X,求X的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有一片產(chǎn)量很大的水果種植園,在臨近成熟時隨機摘下某品種水果100個,其質(zhì)量(均在l至11kg)頻數(shù)分布表如下(單位: kg):
分組 | | | | | |
頻數(shù) | 10 | 15 | 45 | 20 | 10 |
以各組數(shù)據(jù)的中間值代表這組數(shù)據(jù)的平均值,將頻率視為概率.
(1)由種植經(jīng)驗認為,種植園內(nèi)的水果質(zhì)量近似服從正態(tài)分布
,其中
近似為樣本平均數(shù)
近似為樣本方差
.請估算該種植園內(nèi)水果質(zhì)量在
內(nèi)的百分比;
(2)現(xiàn)在從質(zhì)量為 的三組水果中用分層抽樣方法抽取14個水果,再從這14個水果中隨機抽取3個.若水果質(zhì)量
的水果每銷售一個所獲得的的利潤分別為2元,4元,6元,記隨機抽取的3個水果總利潤為
元,求
的分布列及數(shù)學期望.
附:
,則
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com