【題目】已知如圖幾何體,正方形和矩形
所在平面互相垂直,
,
為
的中點,
.
(Ⅰ)求證:平面
;
(Ⅱ)求二面角的大。
【答案】(I)見解析;(Ⅱ).
【解析】
(Ⅰ)證明平面
,利用線面平行的判定,只需證明
平行于平面
中以一條線即可,連接
,
,連接
,則
為
的中點,根據(jù)
為
的中點,可證
;
(Ⅱ)以為原點,以
,
,
為
,
,
軸建立空間直角坐標(biāo)系,證明法向量垂直,由此可求二面角
的平面角的大小.
(Ⅰ)證明:連接,
,連接
,
則為
的中點
為
的中點,
平面
,
平面
平面
;
(Ⅱ)解:因為正方形和矩形
所在平面互相垂直,所以
平面
,
以為原點,以
,
,
為
,
,
軸建立空間直角坐標(biāo)系,如圖取
,
,1,
,
,0,
,
,1,
,
,0,
,
,1,
,
設(shè)平面的法向量為
,
,
,
,
,
,
,1,
,
,不妨令
,解得
,1,
;
同理平面的法向量為
,1,
,
,
二面角
的大小為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC在內(nèi)角A、B、C的對邊分別為a,b,c,已知a=bcosC+csinB.
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:實數(shù)滿足不等式
;
命題q:關(guān)于不等式
對任意的
恒成立.
(1)若命題為真命題,求實數(shù)
的取值范圍;
(2)若“”為假命題,“
”為真命題,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點,圓
,定點
,點
是圓
上一動點,線段
的垂直平分線交圓
的半徑
于點
,點
的軌跡為
.
(1)求曲線的方程;
(2)已知點是曲線
上但不在坐標(biāo)軸上的任意一點,曲線
與
軸的焦點分別為
,直線
和
分別與
軸相交于
兩點,請問線段長之積
是否為定值?如果還請求出定值,如果不是請說明理由;
(3)在(2)的條件下,若點坐標(biāo)為(-1,0),設(shè)過點
的直線
與
相交于
兩點,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年,教育部發(fā)文確定新高考改革正式啟動,湖南、廣東、湖北等8省市開始實行新高考制度,從2018年下學(xué)期的高一年級學(xué)生開始實行.為了適應(yīng)新高考改革,某校組織了一次新高考質(zhì)量測評,在成績統(tǒng)計分析中,高二某班的數(shù)學(xué)成績的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見部分如下,據(jù)此解答如下問題:
(1)求該班數(shù)學(xué)成績在的頻率及全班人數(shù);
(2)根據(jù)頻率分布直方圖估計該班這次測評的數(shù)學(xué)平均分;
(3)若規(guī)定分及其以上為優(yōu)秀,現(xiàn)從該班分數(shù)在
分及其以上的試卷中任取
份分析學(xué)生得分情況,求在抽取的
份試卷中至少有
份優(yōu)秀的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為定義在實數(shù)集
上的函數(shù),把方程
稱為函數(shù)
的特征方程,特征方程的兩個實根
、
(
),稱為
的特征根.
(1)討論函數(shù)的奇偶性,并說明理由;
(2)已知為給定實數(shù),求
的表達式;
(3)把函數(shù),
的最大值記作
,最小值記作
,研究函數(shù)
,
的單調(diào)性,令
,若
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且
時
有極大值
.
(Ⅰ)求的解析式;
(Ⅱ)若為
的導(dǎo)函數(shù),不等式
(
為正整數(shù))對任意正實數(shù)
恒成立,求
的最大值.(注:
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為更好地落實農(nóng)民工工資保證金制度,南方某市勞動保障部門調(diào)查了年下半年該市
名農(nóng)民工(其中技術(shù)工、非技術(shù)工各
名)的月工資,得到這
名農(nóng)民工月工資的中位數(shù)為
百元(假設(shè)這
名農(nóng)民工的月工資均在
(百元)內(nèi))且月工資收入在
(百元)內(nèi)的人數(shù)為
,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖:
(Ⅰ)求,
的值;
(Ⅱ)已知這名農(nóng)民工中月工資高于平均數(shù)的技術(shù)工有
名,非技術(shù)工有
名,則能否在犯錯誤的概率不超過
的前提下認為是不是技術(shù)工與月工資是否高于平均數(shù)有關(guān)系?
參考公式及數(shù)據(jù):,其中
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com