【題目】已知正項數(shù)列{an}的前n項和Sn滿足2Sn=an2+an-2.
(1)求數(shù)列{an}的通項公式;
(2)若bn=(n∈N*),求數(shù)列{bn}的前n項和Tn.
(3)是否存在實數(shù)λ使得Tn+2>λSn對n∈N+恒成立,若存在,求實數(shù)λ的取值范圍,若不存在說明理由.
【答案】(1);(2)
;(3)存在,
【解析】
(1)直接利用遞推關系式的應用求出數(shù)列的通項公式.
(2)利用(1)的結(jié)論,進一步求出數(shù)列的通項公式.
(3)利用恒成立問題的應用和函數(shù)的單調(diào)性的應用求出參數(shù)的取值范圍.
(1)當n=1時,a1=2或-1(舍去).
當n≥2時,,
整理可得:(an+an-1)(an-an-1-1)=0,
可得an-an-1=1,
∴{an}是以a1=2為首項,d=1為公差的等差數(shù)列.
∴.
(2)由(1)得an=n+1,
∴.
∴.
(3)假設存在實數(shù)λ,使得對一切正整數(shù)恒成立,
即對一切正整數(shù)恒成立,只需滿足
即可,
令,
則
當
故 f(1)=1,f(2)=,f(3)=
,
>f(5)>f(6)>…
當n=3時有最小值.
所以.
科目:高中數(shù)學 來源: 題型:
【題目】設命題:函數(shù)
的定義域為
;命題
:關于
的方程
有實根.
(1)如果是真命題,求實數(shù)
的取值范圍.
(2)如果命題“”為真命題,且“
”為假命題,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關, 現(xiàn)收集了該種藥用昆蟲的6組觀測數(shù)據(jù)如下表:
溫度x/C | 21 | 23 | 24 | 27 | 29 | 32 |
產(chǎn)卵數(shù)y/個 | 6 | 11 | 20 | 27 | 57 | 77 |
經(jīng)計算得: ,
,
,
,
,線性回歸模型的殘差平方和
,e8.0605≈3167,其中xi, yi分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1, 2, 3, 4, 5, 6.
(Ⅰ)若用線性回歸模型,求y關于x的回歸方程=
x+
(精確到0.1);
(Ⅱ)若用非線性回歸模型求得y關于x的回歸方程為=0.06e0.2303x,且相關指數(shù)R2=0.9522.
( i )試與(Ⅰ)中的回歸模型相比,用R2說明哪種模型的擬合效果更好.
( ii )用擬合效果好的模型預測溫度為35C時該種藥用昆蟲的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).
附:一組數(shù)據(jù)(x1,y1), (x2,y2), ...,(xn,yn ), 其回歸直線=
x+
的斜率和截距的最小二乘估計為
=
;相關指數(shù)R2=
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設集合A={(x,y)|(x-4)2+y2=1},B={(x,y)|(x-t)2+(y-at+2)2=1},如果命題“t∈R,A∩B≠”是真命題,則實數(shù)a的取值范圍是( 。
A.B.
C.D.
,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標原點為極點,
軸為極軸建立極坐標系,曲線
的極坐標為
.
(1)求曲線的普通方程和曲線
的直角坐標方程;
(2)若曲線和曲線
有三個公共點,求以這三個公共點為頂點的三角形的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:
的兩個焦點分別為
和
,短軸的兩個端點分別為
和
,點
在橢圓
上,且滿足
,當
變化時,給出下列三個命題:
①點的軌跡關于
軸對稱;②
的最小值為2;
③存在使得橢圓
上滿足條件的點
僅有兩個,
其中,所有正確命題的序號是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
.
(Ⅰ)當時,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若在區(qū)間上存在不相等的實數(shù)
,使
成立,求
的取值范圍;
(Ⅲ)若函數(shù)有兩個不同的極值點
,
,求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公園準備在一圓形水池里設置兩個觀景噴泉,觀景噴泉的示意圖如圖所示,兩點為噴泉,圓心
為
的中點,其中
米,半徑
米,市民可位于水池邊緣任意一點
處觀賞.
(1)若當時,
,求此時
的值;
(2)設,且
.
(i)試將表示為
的函數(shù),并求出
的取值范圍;
(ii)若同時要求市民在水池邊緣任意一點處觀賞噴泉時,觀賞角度
的最大值不小于
,試求
兩處噴泉間距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在直三棱柱中,
,
,其中
為棱
上的中點,
為棱
上且位于
點上方的動點.
(1)證明:平面
;
(2)若平面與平面
所成的銳二面角的余弦值為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com