【題目】如圖,四棱錐中,側(cè)棱
垂直于底面
,
,
,
為
的中點(diǎn),
平行于
,
平行于面
,
.
(1)求的長(zhǎng);
(2)求二面角的余弦值.
【答案】(1)見(jiàn)解析;(2)
【解析】試題分析:(1)取的中點(diǎn)
,連接
、
,由三角形中位線定理,以及線面平行的判定定理可得
平行于
,
平行于
,于是可得
為平行四邊形,所以
,
;(2)取
中點(diǎn)
,則
垂直于
,以
點(diǎn)為原點(diǎn),
為
軸,
為
軸,
為
軸建立坐標(biāo)系,平面
法向量為
,利用向量垂直數(shù)量積為零,列方程組求得
平面法向量為
,平面
的法向量,利用空間向量夾角余弦公式可得結(jié)果.
試題解析:(1)取的中點(diǎn)
,連接
、
,
因?yàn)?/span>平行于
,
平行于
,所以
平行于
,
所以四點(diǎn)共面,
因?yàn)?/span>平行于面
,面
與面
交與
,所以
平行于
,
所以為平行四邊形.
所以,
.
(2取中點(diǎn)
,則
垂直于
,因?yàn)?/span>
平行于
,所以
垂直于
,于是以
點(diǎn)為原點(diǎn),
為
軸,
為
軸,
為
軸建立坐標(biāo)系,
由垂直于
,
垂直于
,平面
法向量為
,
通過(guò)計(jì)算得平面的法向量為
.經(jīng)判斷知二面角為鈍角,于是其余弦為
.
【方法點(diǎn)晴】本題主要考查線面平行的判斷與性質(zhì)、利用空間向量求二面角,屬于難題.空間向量解答立體幾何問(wèn)題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫(xiě)出相應(yīng)點(diǎn)的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)中國(guó)日?qǐng)?bào)網(wǎng)報(bào)道:2017年11月13日,TOP500發(fā)布的最新一期全球超級(jí)計(jì)算機(jī)500強(qiáng)榜單顯示,中國(guó)超算在前五名中占據(jù)兩席,其中超算全球第一“神威太湖之光”完全使用了國(guó)產(chǎn)品牌處理器。為了了解國(guó)產(chǎn)品牌處理器打開(kāi)文件的速度,某調(diào)查公司對(duì)兩種國(guó)產(chǎn)品牌處理器進(jìn)行了12次測(cè)試,結(jié)果如下(數(shù)值越小,速度越快,單位是MIPS)
測(cè)試1 | 測(cè)試2 | 測(cè)試3 | 測(cè)試4 | 測(cè)試5 | 測(cè)試6 | 測(cè)試7 | 測(cè)試8 | 測(cè)試9 | 測(cè)試10 | 測(cè)試11 | 測(cè)試12 | |
品牌A | 3 | 6 | 9 | 10 | 4 | 1 | 12 | 17 | 4 | 6 | 6 | 14 |
品牌B | 2 | 8 | 5 | 4 | 2 | 5 | 8 | 15 | 5 | 12 | 10 | 21 |
設(shè)分別表示第次測(cè)試中品牌A和品牌B的測(cè)試結(jié)果,記
(Ⅰ)求數(shù)據(jù)的眾數(shù);
(Ⅱ)從滿足的測(cè)試中隨機(jī)抽取兩次,求品牌A的測(cè)試結(jié)果恰好有一次大于品牌B的測(cè)試結(jié)果的概率;
(Ⅲ)經(jīng)過(guò)了解,前6次測(cè)試是打開(kāi)含有文字和表格的文件,后6次測(cè)試是打開(kāi)含有文字和圖片的文件.請(qǐng)你依據(jù)表中數(shù)據(jù),運(yùn)用所學(xué)的統(tǒng)計(jì)知識(shí),對(duì)這兩種國(guó)產(chǎn)品牌處理器打開(kāi)文件的速度進(jìn)行評(píng)價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線,
,
為拋物線的焦點(diǎn),
是拋物線上兩點(diǎn),線段
的中垂線交
軸于
,
,
。
(Ⅰ)證明:是
的等差中項(xiàng);
(Ⅱ)若,
為平行于
軸的直線,其被以AD為直徑的圓所截得的弦長(zhǎng)為定值,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗
(噸)標(biāo)準(zhǔn)煤的幾組對(duì)照數(shù)據(jù):
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于
的線性回歸方程
;
(2)已知該廠技改前,100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?
,參考數(shù)值:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱中,
且
,
是棱
上的動(dòng)點(diǎn),
是
的中點(diǎn).
(1)當(dāng)是
中點(diǎn)時(shí),求證:
平面
;
(2)在棱上是否存在點(diǎn)
,使得平面
與平面
所成銳二面角為
,若存在,求
的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,矩形中,
,
平面
,
,
為
上的點(diǎn),且
平面
.
(1)求證:平面
;
(2)求平面與平面
所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊長(zhǎng)為4的菱形中,
,點(diǎn)
分別是邊
的中點(diǎn),
,沿
將
翻折到
,連接
,得到如圖所示的五棱錐,且
.
(1)求證:平面平面
;
(2)求平面與平面
所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018安徽江南十校高三3月聯(lián)考】線段為圓
:
的一條直徑,其端點(diǎn)
,
在拋物線
:
上,且
,
兩點(diǎn)到拋物線
焦點(diǎn)的距離之和為
.
(I)求直徑所在的直線方程;
(II)過(guò)點(diǎn)的直線
交拋物線
于
,
兩點(diǎn),拋物線
在
,
處的切線相交于
點(diǎn),求
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面
是直角梯形,
,
,
,側(cè)面
底面
,且
是以
為底的等腰三角形.
(Ⅰ)證明:
(Ⅱ)若四棱錐的體積等于
.問(wèn):是否存在過(guò)點(diǎn)
的平面
分別交
,
于點(diǎn)
,使得平面
平面
?若存在,求出
的面積;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com