日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】(1).選修4—1:幾何證明選講

          如圖,CD是圓O的切線,切點(diǎn)為D,CA是過圓心O的割線且交圓O于點(diǎn)B,DADC.求證: CA3CB

          (2).選修4—2矩陣與變換

          設(shè)二階矩陣A

          (Ⅰ)求A1;

          (Ⅱ)若曲線C在矩陣A對應(yīng)的變換作用下得到曲線C6x2y21,求曲線C的方程.

          (3).選修4—4坐標(biāo)系與參數(shù)方程

          在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為t為參數(shù)),圓C的參數(shù)方程為θ為參數(shù)).若直線l與圓C相切,求實(shí)數(shù)a的值.

          (4).選修4—5:不等式選講

          解不等式:|x2||x1|≥5

          【答案】(1)見解析(2)(Ⅰ)(Ⅱ)8y2-3x2=1(3)1±(4)(-∞,-2]∪[3,+∞).

          【解析】試題分析:(1)連接, , 為圓的切線, , 從而,可得,進(jìn)而可得結(jié)果;(2)曲線上任意一點(diǎn)在矩陣對應(yīng)的變換作用下得到點(diǎn), ,代入,即可得結(jié)果;(3)先求直線的普通方程與圓的普通方程,利用圓心到直線的距離等于半徑可得結(jié)果;(4)分三種情況討論,分別求解不等式組,然后求并集即可得結(jié)果.

          試題解析:(1)證明:連接OD,因?yàn)?/span>DA=DC,

          所以∠DAO=∠C

          在圓O中,AO=DO,所以∠DAO=∠ADO,

          所以∠DOC=2∠DAO=2∠C

          因?yàn)?/span>CD為圓O的切線,所以∠ODC=90°,

          從而DOCC=90°,

          即2∠C+∠C=90°,故∠C=30°,

          所以OC=2OD=2OB,

          所以CBOB,所以CA=3CB

          (2)(Ⅰ)根據(jù)逆矩陣公式,可得A-1

          (Ⅱ)設(shè)曲線C上任意一點(diǎn)P(xy)在矩陣A對應(yīng)的變換作用下得到點(diǎn)P (x,y),

          ,所以

          因?yàn)?x,y)在曲線C上,所以6x2y2=1,代入6(x+2y)2-(3x+4y)2=1,化簡得8y2-3x2=1,

          所以曲線C的方程為8y2-3x2=1

          (3)由直線l的參數(shù)方程為,得直線l的普通方程為xy+1=0.

          由圓C的參數(shù)方程為,得圓C的普通方程為(xa)2+(y-2a)2=1.

          因?yàn)橹本l與圓C相切,所以=1,

          解得a=1±

          所以實(shí)數(shù)a的值為1±

          (4)(1)當(dāng)x<-1時(shí),不等式可化為-x+2-x-1≥5,解得x≤-2;

          (2)當(dāng)-1≤x≤2時(shí),不等式可化為-x+2+x+1≥5,此時(shí)不等式無解;

          (3)當(dāng)x>2時(shí),不等式可化為x-2+x+1≥5,解得x≥3;

          所以原不等式的解集為(-∞,-2]∪[3,+∞).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列說法正確的是( ).

          A. ,“”是“”的必要不充分條件

          B. 為真命題”是“為真命題” 的必要不充分條件

          C. 命題“,使得”的否定是:“

          D. 命題:“”,則是真命題

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列中, .

          (1)證明:數(shù)列為等差數(shù)列;

          (2)求數(shù)列的前項(xiàng)和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】共享單車是指企業(yè)在校園、地鐵站點(diǎn)、公交站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是共享經(jīng)濟(jì)的一種新形態(tài).一個(gè)共享單車企業(yè)在某個(gè)城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數(shù)量(單位:千輛)之間的關(guān)系”進(jìn)行調(diào)查研究,在調(diào)查過程中進(jìn)行了統(tǒng)計(jì),得出相關(guān)數(shù)據(jù)見下表:

          租用單車數(shù)量(千輛)

          2

          3

          4

          5

          8

          每天一輛車平均成本(元)

          3.2

          2.4

          2

          1.9

          1.7

          根據(jù)以上數(shù)據(jù),研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲: ,方程乙: .

          (1)為了評價(jià)兩種模型的擬合效果,完成以下任務(wù):

          ①完成下表(計(jì)算結(jié)果精確到0.1)(備注: ,稱為相應(yīng)于點(diǎn)的殘差(也叫隨機(jī)誤差));

          租用單車數(shù)量 (千輛)

          2

          3

          4

          5

          8

          每天一輛車平均成本 (元)

          3.2

          2.4

          2

          1.9

          1.7

          模型甲

          估計(jì)值

          2.4

          2.1

          1.6

          殘差

          0

          -0.1

          0.1

          模型乙

          估計(jì)值

          2.3

          2

          1.9

          殘差

          0.1

          0

          0

          ②分別計(jì)算模型甲與模型乙的殘差平方和,并通過比較的大小,判斷哪個(gè)模型擬合效果更好.

          (2)這個(gè)公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應(yīng)求,于是該公司研究是否增加投放.根據(jù)市場調(diào)查,這個(gè)城市投放8千輛時(shí),該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬輛時(shí),該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.4,0.6.問該公司應(yīng)該投放8千輛還是1萬輛能獲得更多利潤?(按(1)中擬合效果較好的模型計(jì)算一天中一輛單車的平均成本,利潤=收入-成本).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=x+ (x>0,m>0)和函數(shù)g(x)=a|x﹣b|+c(x∈R,a>0,b>0).問:
          (1)證明:f(x)在( ,+∞)上是增函數(shù);
          (2)把函數(shù)g1(x)=|x|和g2(x)=|x﹣1|寫成分段函數(shù)的形式,并畫出它們的圖象,總結(jié)出g2(x)的圖象是如何由g1(x)的圖象得到的.請利用上面你的結(jié)論說明:g(x)的圖象關(guān)于x=b對稱;
          (3)當(dāng)m=1,b=2,c=0時(shí),若f(x)>g(x)對于任意的x>0恒成立,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=|2x﹣1|,當(dāng)a<b<c時(shí),f(a)>f(c)>f(b),那么正確的結(jié)論是(
          A.2a>2b
          B.2a>2c
          C.2a<2c
          D.2a+2c<2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)y=
          (1)求函數(shù)的定義域及值域;
          (2)確定函數(shù)的單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知曲線, ,則下列說法正確的是( )

          A. 上各點(diǎn)橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長度,得到曲線

          B. 上各點(diǎn)橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長度,得到曲線

          C. 把曲線向右平移個(gè)單位長度,再把得到的曲線上各點(diǎn)橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到曲線

          D. 把曲線向右平移個(gè)單位長度,再把得到的曲線上各點(diǎn)橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到曲線

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】化簡或求值:
          (1)(2 0+22×(2 ﹣(
          (2)2(lg 2+lg lg5+

          查看答案和解析>>

          同步練習(xí)冊答案