日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓中心在原點(diǎn),焦點(diǎn)在y軸上,離心率為,以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)為半徑的圓與直線(xiàn)相切.
          (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
          (Ⅱ)設(shè)點(diǎn)F是橢圓在y軸正半軸上的一個(gè)焦點(diǎn),點(diǎn)A,B是拋物線(xiàn)上的兩個(gè)動(dòng)點(diǎn),且滿(mǎn)足,過(guò)點(diǎn)A,B分別作拋物線(xiàn)的兩條切線(xiàn),設(shè)兩切線(xiàn)的交點(diǎn)為M,試推斷是否為定值?若是,求出這個(gè)定值;若不是,說(shuō)明理由.
          (Ⅰ)(Ⅱ)為定值0.
          (Ⅰ)設(shè)橢圓方程為(ab>0).       
          因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133639943323.gif" style="vertical-align:middle;" />,得.又,則.
          故橢圓的標(biāo)準(zhǔn)方程是.                          (5分)
          (Ⅱ)由橢圓方程知,c=1,所以焦點(diǎn)F(0,1),設(shè)點(diǎn)A(x1y1),B(x2,y2).
          ,得(-x1,1-y1)=λ(x2y2-1),所以-x1λx2,1-y1λ(y2-1). (7分)
          于是.因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133640177403.gif" style="vertical-align:middle;" />,,則y1λ2y2.
          聯(lián)立y1λ2y2和1-y1λ(y2-1),得y1λy2=.             (8分)
          因?yàn)閽佄锞(xiàn)方程為yx2,求導(dǎo)得y′=x.設(shè)過(guò)拋物線(xiàn)上的點(diǎn)A、B的切線(xiàn)分別為l1,l2,則
          直線(xiàn)l1的方程是yx1(xx1)+y1,即yx1xx12.     (9分)
          直線(xiàn)l2的方程是yx2(xx2)+y2,即yx2xx22.        (10分)
          聯(lián)立l1l2的方程解得交點(diǎn)M的坐標(biāo)為.        (11分)
          因?yàn)?i>x1x2=-λx22=-4λy2=-4.所以點(diǎn)M.             (12分)
          于是,(x2x1,y2y1).
          所以=(x22x12)-2(x22x12)=0.
          為定值0.       (13分)
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知定圓圓心為A,動(dòng)圓M過(guò)點(diǎn)B(1,0)且和圓A相切,動(dòng)圓的圓心M的軌跡記為C.
          (I)求曲線(xiàn)C的方程;
          (II)若點(diǎn)為曲線(xiàn)C上一點(diǎn),求證:直線(xiàn)與曲線(xiàn)C有且只有一個(gè)交點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖中心在原點(diǎn),焦點(diǎn)在軸上的橢圓,離心率,且經(jīng)過(guò)拋物線(xiàn)的焦點(diǎn).
          (I)求橢圓的標(biāo)準(zhǔn)方程;
          (II)若過(guò)點(diǎn)B(2,0)的直線(xiàn)L(斜率不等于零)與橢圓交于不同的兩點(diǎn)E、F(E在B、F之間),試求OBE與OBF面積1:2,求直線(xiàn)L的方程。
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          設(shè)橢圓上一點(diǎn)P到其左焦點(diǎn)的距離為3,到右焦點(diǎn)的距離為1,則P點(diǎn)到右準(zhǔn)線(xiàn)的距離為
          A. 6B. 2C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          設(shè)F1、F2分別為橢圓C =1(ab>0)的左、右兩個(gè)焦點(diǎn).
          (1)若橢圓C上的點(diǎn)A(1,)到F1、F2兩點(diǎn)的距離之和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo);
          (2)設(shè)點(diǎn)P是(1)中所得橢圓上的動(dòng)點(diǎn),當(dāng)P在何位置時(shí),最大,說(shuō)明理由,并求出最大值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,橢圓C: 的焦點(diǎn)為F1(0,c)、F2(0,一c)(c>0),拋物線(xiàn)的焦點(diǎn)與F1重合,過(guò)F2的直線(xiàn)l與拋物線(xiàn)P相切,切點(diǎn)在第一象限,且與橢圓C相交于A、B兩點(diǎn),且
          (I)求證:切線(xiàn)l的斜率為定值;
          (Ⅱ)若拋物線(xiàn)P與直線(xiàn)l及y軸圍成的圖形面積為,求拋物線(xiàn)P的方程;
          (III)當(dāng)時(shí),求橢圓離心率e的取值范圍。


           
           

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知A.B是橢圓上兩點(diǎn),O是坐標(biāo)原點(diǎn),定點(diǎn),向量在向量方向上的投影分別是m.n ,且7mn ,動(dòng)點(diǎn)P滿(mǎn)足
          (Ⅰ)求點(diǎn)P的軌跡C的方程;
          (Ⅱ)設(shè)過(guò)點(diǎn)E的直線(xiàn)l與C交于兩個(gè)不同的點(diǎn)M.N,求的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          設(shè),為直角坐標(biāo)平面內(nèi)x軸.y軸正方向上的單位向量,若,且
          (Ⅰ)求動(dòng)點(diǎn)M(x,y)的軌跡C的方程;
          (Ⅱ)設(shè)曲線(xiàn)C上兩點(diǎn)A.B,滿(mǎn)足(1)直線(xiàn)AB過(guò)點(diǎn)(0,3),(2)若,則OAPB為矩形,試求AB方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          若橢圓經(jīng)過(guò)原點(diǎn),且焦點(diǎn)F1(1,0),F(xiàn)(3,0),則其離心率為 (  )
          A.B.C.D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案