日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知變換T 把平面上的點(1,0),(0,)分別變換成點(1,1),(-).
          (1)試求變換T對應(yīng)的矩陣M;
          (2)求曲線x2-y2=1在變換T的作用下所得到的曲線的方程.
          【答案】分析:(1)先設(shè)出所求矩陣,利用待定系數(shù)法建立一個四元一次方程組,解方程組即可;
          (2)先設(shè)P(x,y)是曲線x2-y2=1上的任一點,P1(x′,y′)是P(x,y)在矩陣T對應(yīng)變換作用下新曲線上的對應(yīng)點,根據(jù)矩陣變換求出P與P1的關(guān)系,代入已知曲線求出所求曲線即可.
          解答:解:(1)設(shè)矩陣M=依題意得,=
          ∴(1,0)變換為(1,1)得:a=1,c=1,
          (0,) 變換為(-,) 得:b=-1,d=1
          所求矩陣M=…(5分)
          (2)變換T所對應(yīng)關(guān)系解得…(7分)
          代入x2-y2=1得:x′y′=1,
          故x2-y2=1在變換T的作用下所得到的曲線方程得xy=1 …(10分)
          點評:本題主要考查來了逆矩陣與投影變換,以及計算能力,屬于基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知變換T將平面上的點(2,-1),(-1,2)分別變換成點(3,-4),(0,5).試求變換T對應(yīng)的矩陣M的逆矩陣.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知變換T 把平面上的點(1,0),(0,
          2
          )分別變換成點(1,1),(-
          2
          ,
          2
          ).
          (1)試求變換T對應(yīng)的矩陣M;
          (2)求曲線x2-y2=1在變換T的作用下所得到的曲線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知變換T把平面上的點A(2,0),B(3,1)分別變換成點A′(2,1),B′(3,2),試求變換T對應(yīng)的矩陣M.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知變換T 把平面上的點(1,0),(0,
          2
          )分別變換成點(1,1),(-
          2
          ,
          2
          ).
          (1)試求變換T對應(yīng)的矩陣M;
          (2)求曲線x2-y2=1在變換T的作用下所得到的曲線的方程.

          查看答案和解析>>

          同步練習(xí)冊答案