日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】科研人員在對人體脂肪含量和年齡之間關(guān)系的研究中,獲得了一些年齡和脂肪含量的簡單隨機樣本數(shù)據(jù),如下表:

          根據(jù)上表的數(shù)據(jù)得到如下的散點圖.

          (1)根據(jù)上表中的樣本數(shù)據(jù)及其散點圖:

          (i)求;

          (ii)計算樣本相關(guān)系數(shù)(精確到0.01),并刻畫它們的相關(guān)程度.

          (2)若y關(guān)于x的線性回歸方程為,求的值(精確到0.01),并根據(jù)回歸方程估計年齡為50歲時人體的脂肪含量。

          附:參考數(shù)據(jù):

          參考公式:相關(guān)系數(shù)

          回歸方程中斜率和截距的最小二乘估計公式分別為

          【答案】(1)(i)(ⅱ)可以推斷人體脂肪含量和年齡的相關(guān)程度很強; (2)根據(jù)回歸方程預(yù)測年齡為歲時人的脂肪含量為%..

          【解析】

          1)(i)根據(jù)平均數(shù)公式求解(ⅱ)先根據(jù)公式求,再作判斷,(2)根據(jù),將代入線性回歸方程得估計值.

          (1)根據(jù)上表中的樣本數(shù)據(jù)及其散點圖:

          (。

          (ⅱ)

          因為,所以

          由樣本相關(guān)系數(shù),可以推斷人體脂肪含量和年齡的相關(guān)程度很強.

          (2)因為回歸方程為,即

          所以

          【或利用

          所以關(guān)于的線性回歸方程為

          代入線性回歸方程得

          所以根據(jù)回歸方程預(yù)測年齡為歲時人的脂肪含量為%.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知城市周邊有兩個小鎮(zhèn),其中鄉(xiāng)鎮(zhèn)位于城市的正東方處,鄉(xiāng)鎮(zhèn)與城市相距,夾角的正切值為2,為方便交通,現(xiàn)準(zhǔn)備建設(shè)一條經(jīng)過城市的公路,使鄉(xiāng)鎮(zhèn)分別位于的兩側(cè),過建設(shè)兩條垂直的公路,分別與公路交匯于兩點,以為原點,所在直線為軸,建立如圖所示的平面直角坐標(biāo)系.

          1)當(dāng)兩個交匯點、重合,試確定此時路段長度;

          2)當(dāng),計算此時兩個交匯點、到城市的距離之比;

          3)若要求兩個交匯點、的距離不超過,求正切值的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某教師將寒假期間該校所有學(xué)生閱讀小說的時間統(tǒng)計如下圖所示,并統(tǒng)計了部分學(xué)生閱讀小說的類型,得到的數(shù)據(jù)如下表所示:

          男生

          女生

          閱讀武俠小說

          80

          30

          閱讀都市小說

          20

          70

          (1)是否有99.9%的把握認(rèn)為“性別”與“閱讀小說的類型”有關(guān)?

          (2)求學(xué)生閱讀小說時間的眾數(shù)和平均數(shù)(同一組數(shù)據(jù)用該組區(qū)間的中點值作代表);

          (3)若按照分層抽樣的方法從閱讀時間在、的學(xué)生中隨機抽取6人,再從這6人中隨機挑選2人介紹選取小說類型的緣由,求所挑選的2人閱讀時間都在的概率.

          附:,.

          0.025

          0.010

          0.005

          0.001

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】十九大以來,某貧困地區(qū)扶貧辦積極貫徹落實國家精準(zhǔn)扶貧的政策要求,帶領(lǐng)廣大農(nóng)村地區(qū)人民群眾脫貧奔小康。經(jīng)過不懈的奮力拼搏,新農(nóng)村建設(shè)取得巨大進步,農(nóng)民年收入也逐年增加。為了更好的制定2019年關(guān)于加快提升農(nóng)民年收人力爭早日脫貧的工作計劃,該地扶貧辦統(tǒng)計了2018年50位農(nóng)民的年收人并制成如下頻率分布直方圖:

          (1)根據(jù)頻率分布直方圖,估計50位農(nóng)民的年平均收入(單位:千元)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點值表示);

          (2)由頻率分布直方圖,可以認(rèn)為該貧困地區(qū)農(nóng)民年收入服從正態(tài)分布,其中近似為年平均收入,近似為樣本方差,經(jīng)計算得.利用該正態(tài)分布,求:

          (i)在2019年脫貧攻堅工作中,若使該地區(qū)約有占總農(nóng)民人數(shù)的的農(nóng)民的年收入高于扶貧辦制定的最低年收入標(biāo)準(zhǔn),則最低年收入大約為多少千元?

          (ii)為了調(diào)研“精準(zhǔn)扶貧,不落一人”的政策要求落實情況, 扶貧辦隨機走訪了1000位農(nóng)民。若每個農(nóng)民的年收人相互獨立,問:這1000位農(nóng)民中的年收入不少于12.14千元的人數(shù)最有可能是多少?

          附:參考數(shù)據(jù)與公式,若,則①;②;③.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知四棱錐的底面為棱形,且,,,,且,分別為的中點.

          1)求證:;

          2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知復(fù)數(shù)z,(m∈R,i是虛數(shù)單位).

          (1)若z是純虛數(shù),求m的值;

          (2)設(shè)z的共軛復(fù)數(shù),復(fù)數(shù)+2z在復(fù)平面上對應(yīng)的點在第一象限,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,橢圓經(jīng)過點,且點到橢圓的兩焦點的距離之和為.

          (l)求橢圓的標(biāo)準(zhǔn)方程;

          (2)若是橢圓上的兩個點,線段的中垂線的斜率為且直線交于點為坐標(biāo)原點,求證:三點共線.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)的最大值為,其圖像相鄰兩條對稱軸之間的距離為,且的圖像關(guān)于點對稱,則下列判斷正確的是()

          A. 函數(shù)上單調(diào)遞增

          B. 函數(shù)的圖像關(guān)于直線對稱

          C. 當(dāng)時,函數(shù)的最小值為

          D. 要得到函數(shù)的圖像,只需要將的圖像向右平移個單位

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

          (1)求曲線的極坐標(biāo)方程和曲線的參數(shù)方程;

          (2)若曲線與曲線,在第一象限分別交于兩點,且,求的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案