日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某景區(qū)的各景點(diǎn)從2009年取消門(mén)票實(shí)行免費(fèi)開(kāi)放后,旅游的人數(shù)不斷地增加,不僅帶動(dòng)了該市淡季的旅游,而且優(yōu)化了旅游產(chǎn)業(yè)的結(jié)構(gòu),促進(jìn)了該市旅游向觀光、休閑、會(huì)展三輪驅(qū)動(dòng)的理想結(jié)構(gòu)快速轉(zhuǎn)變.下表是從2009年至2018年,該景點(diǎn)的旅游人數(shù)(萬(wàn)人)與年份的數(shù)據(jù):

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          旅游人數(shù)(萬(wàn)人)

          300

          283

          321

          345

          372

          435

          486

          527

          622

          800

          該景點(diǎn)為了預(yù)測(cè)2021年的旅游人數(shù),建立了的兩個(gè)回歸模型:

          模型①:由最小二乘法公式求得的線性回歸方程;

          模型②:由散點(diǎn)圖的樣本點(diǎn)分布,可以認(rèn)為樣本點(diǎn)集中在曲線的附近.

          1)根據(jù)表中數(shù)據(jù),求模型②的回歸方程.(精確到個(gè)位,精確到001).

          2)根據(jù)下列表中的數(shù)據(jù),比較兩種模型的相關(guān)指數(shù),并選擇擬合精度更高、更可靠的模型,預(yù)測(cè)2021年該景區(qū)的旅游人數(shù)(單位:萬(wàn)人,精確到個(gè)位).

          回歸方程

          30407

          14607

          參考公式、參考數(shù)據(jù)及說(shuō)明:

          ①對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)分別為.②刻畫(huà)回歸效果的相關(guān)指數(shù);③參考數(shù)據(jù):,

          55

          449

          605

          83

          4195

          900

          表中

          【答案】(1);(2)回歸模型②的擬合效果更好,987

          【解析】

          1)對(duì)取對(duì)數(shù),得,設(shè),先建立關(guān)于的線性回歸方程.

          2)根據(jù)所給數(shù)據(jù)計(jì)算,即可判斷那種模型的擬合效果更優(yōu),再代入數(shù)據(jù)計(jì)算可得.

          解:(1)對(duì)取對(duì)數(shù),得,設(shè),,先建立關(guān)于的線性回歸方程.

          ,

          模型②的回歸方程為.

          2)由表格中的數(shù)據(jù),有30407>14607,即,

          ,,模型①的相關(guān)指數(shù)小于模型②的,

          說(shuō)明回歸模型②的擬合效果更好.

          2021年時(shí),,

          預(yù)測(cè)旅游人數(shù)為(萬(wàn)人).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ2cosθ.

          1)若曲線C1方程中的參數(shù)是α,且C1C2有且只有一個(gè)公共點(diǎn),求C1的普通方程;

          2)已知點(diǎn)A0,1),若曲線C1方程中的參數(shù)是t,0απ,且C1C2相交于P,Q兩個(gè)不同點(diǎn),求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某地區(qū)甲、乙、丙三所單位進(jìn)行招聘,其中甲單位招聘2名,乙單位招聘2名,丙單位招聘1名,并且甲單位要至少招聘一名男生,現(xiàn)有3男3女參加三所單位的招聘,則不同的錄取方案種數(shù)為( )

          A.36B.72C.108D.144

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四棱錐SABCD中,MSB的中點(diǎn),ABCD,BCCD,且ABBC2,CDSD1,又SD⊥面SAB

          1)證明:CDSD;

          2)證明:CM∥面SAD;

          3)求四棱錐SABCD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知,則方程恰有2個(gè)不同的實(shí)根,實(shí)數(shù)取值范圍__________________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在直角坐標(biāo)系中中,曲線的參數(shù)方程為為參數(shù), ). 以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.

          (1)設(shè)是曲線上的一個(gè)動(dòng)點(diǎn),當(dāng)時(shí),求點(diǎn)到直線的距離的最大值;

          (2)若曲線上所有的點(diǎn)均在直線的右下方,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),其中.

          (Ⅰ)討論的單調(diào)性;

          (Ⅱ)當(dāng)時(shí),證明:

          (Ⅲ)求證:對(duì)任意正整數(shù),都有 (其中為自然對(duì)數(shù)的底數(shù)).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某面包店隨機(jī)收集了面包種類(lèi)的有關(guān)數(shù)據(jù),經(jīng)分類(lèi)整理得到下表:

          面包類(lèi)型

          第一類(lèi)

          第二類(lèi)

          第三類(lèi)

          第四類(lèi)

          第五類(lèi)

          第六類(lèi)

          面包個(gè)數(shù)

          90

          60

          30

          80

          100

          40

          好評(píng)率

          0.6

          0.45

          0.7

          0.35

          0.6

          0.5

          好評(píng)率是指:一類(lèi)面包中獲得好評(píng)的個(gè)數(shù)與該類(lèi)面包的個(gè)數(shù)的比值.

          1)從面包店收集的面包中隨機(jī)選取1個(gè),求這個(gè)面包是獲得好評(píng)的第五類(lèi)面包的概率;

          2)從面包店收集的面包中隨機(jī)選取1個(gè),估計(jì)這個(gè)面包沒(méi)有獲得好評(píng)的概率;

          3)面包店為增加利潤(rùn),擬改變生產(chǎn)策略,這將導(dǎo)致不同類(lèi)型面包的好評(píng)率發(fā)生變化.假設(shè)表格中只有兩類(lèi)面包的好評(píng)率數(shù)據(jù)發(fā)生變化,那么哪類(lèi)面包的好評(píng)率增加0.1,哪類(lèi)面包的好評(píng)率減少0.1,使得獲得好評(píng)的面包總數(shù)與樣本中的面包總數(shù)的比值達(dá)到最大?(只需寫(xiě)出結(jié)論)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,設(shè)橢圓a1.

          )求直線y=kx+1被橢圓截得的線段長(zhǎng)(用a、k表示);

          )若任意以點(diǎn)A0,1)為圓心的圓與橢圓至多有3個(gè)公共點(diǎn),求橢圓離心率的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案