已知三角形ABC的頂點(diǎn)坐標(biāo)分別為A,B
,C
;
(1)求直線AB方程的一般式;
(2)證明△ABC為直角三角形;
(3)求△ABC外接圓方程。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線經(jīng)過(guò)兩點(diǎn)(2,1),(6,3)
(1)求直線的方程
(2)圓C的圓心在直線上,并且與
軸相切于點(diǎn)(2,0), 求圓C的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,
分別是橢圓
的左、右焦點(diǎn)
,
關(guān)于直線
的對(duì)稱點(diǎn)是圓
的一條直徑的兩個(gè)端點(diǎn).
(Ⅰ)求圓的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)的直線
被橢圓
和圓
所截得的弦長(zhǎng)分別為
,
.當(dāng)
最大時(shí),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
定義:設(shè)分別為曲線
和
上的點(diǎn),把
兩點(diǎn)距離的最小值稱為曲線
到
的距離.
(1)求曲線到直線
的距離;
(2)若曲線到直線
的距離為
,求實(shí)數(shù)
的值;
(3)求圓到曲線
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn),
的坐標(biāo)分別是
,
.直線
,
相交于點(diǎn)
,且它們的斜率之積為
.
(1)求點(diǎn)的軌跡
的方程;
(2)若過(guò)點(diǎn)的兩直線
和
與軌跡
都只有一個(gè)交點(diǎn),且
,求
的值;
(3)在軸上是否存在兩個(gè)定點(diǎn)
,
,使得點(diǎn)
到點(diǎn)
的距離與到點(diǎn)
的距離的比恒為
,若存在,求出定點(diǎn)
,
;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,過(guò)點(diǎn)P(1,0)作曲線C:的切線,切點(diǎn)為
,設(shè)點(diǎn)
在
軸上的投影是點(diǎn)
;又過(guò)點(diǎn)
作曲線
的切線,切點(diǎn)為
,設(shè)
在
軸上的投影是
;………;依此下去,得到一系列點(diǎn)
,設(shè)點(diǎn)
的橫坐標(biāo)為
.
(1)求直線的方程;
(2)求數(shù)列的通項(xiàng)公式;
(3)記到直線
的距離為
,求證:
時(shí),
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線和直線
,求分別滿足下列條件的
的值
(1) 直線過(guò)點(diǎn)
,并且直線
和
垂直
(2)直線和
平行,且直線
在
軸上的截距為-3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題12分)已知直線l與兩坐標(biāo)軸圍成的三角形的面積為3, 且過(guò)定點(diǎn)A(-3,4). 求直線l的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com