如圖,在直角梯形ABCP中,,D是AP的中點,E,G分別為PC,CB的中點,將三角形PCD沿CD折起,使得PD垂直平面ABCD.(1)若F是PD的中點,求證:AP
平面EFG;(2)當二面角G-EF-D的大小為
時,求FG與平面PBC所成角的余弦值.
(1)詳見解析,(2)
解析試題分析:(1)證明線面平行,關(guān)鍵找線線平行.因為本題條件涉及中點較多,宜從中位線性質(zhì)出發(fā)尋找.如取AD中點M,則有又
所以平面
=平面
.本題也可從證面面平行出發(fā),推出線面平行.(2)已知二面角平面角,求線面角,宜利用空間向量解決.先建立空間直角坐標系,設出各點的坐標,
,
,
,
,設
,利用二面角G-EF-D的大小為
求出
,再利用空間向量數(shù)量積求線面角. 利用空間向量求角,關(guān)鍵是正確表示平面的法向量,明確向量夾角與二面角或線面角之間關(guān)系.
試題解析:(1)證明:是
的中點時,
//
//
,
//
,
//平面
,
//平面
,
,
平面
//平面
,
平面
,
//平面
. (6分)
(2)建立如圖所示的坐標系,則有,
,
,
,設
,
,
,平面
的法向量
,則有
,解得
.
.
平面的法向量
,依題意,
,
.于是
.
平面的法向量
,
,
,則有
,解得
.
.
與平面
所成角為
,則有
,
故有. (12分)
考點:線面平行判定定理,利用空間向量求角
科目:高中數(shù)學 來源: 題型:解答題
如下圖所示,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成的角為60°.
(1)求證:AC⊥平面BDE;
(2)求二面角F-BE-D的余弦值;
(3)設點M是線段BD上一個動點,試確定點M的位置,使得AM∥平面BEF,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(1)證明:PA⊥BD;
(2)若PD=AD,求二面角A-PB-C的余弦值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,四棱錐P—ABCD中,PD底面ABCD,AB//DC,AD
DC,AB=AD=1,DC=2,PD=
,M為棱PB的中點.
(1)證明:DM平面PBC;
(2)求二面角A—DM—C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,四棱錐的底面是正方形,側(cè)棱
底面
,過
作
垂直
交
于
點,作
垂直
交
于
點,平面
交
于
點,且
,
.
(1)設點是
上任一點,試求
的最小值;
(2)求證:、
在以
為直徑的圓上;
(3)求平面與平面
所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知的直徑
,點
、
為
上兩點,且
,
,
為弧
的中點.將
沿直徑
折起,使兩個半圓所在平面互相垂直(如圖2).
(1)求證:;
(2)在弧上是否存在點
,使得
平面
?若存在,試指出點
的位置;若不存在,請說明理由;
(3)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,.
(1)證明:平面PQC⊥平面DCQ;
(2)求二面角Q—BP—C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖甲,△ABC是邊長為6的等邊三角形,E,D分別為AB、AC靠近B、C的三等分點,點G為BC邊的中點.線段AG交線段ED于F點,將△AED沿ED翻折,使平面AED⊥平面BCDE,連接AB、AC、AG形成如圖乙所示的幾何體。
(1)求證BC⊥平面AFG;
(2)求二面角B-AE-D的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com