如下圖所示,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成的角為60°.
(1)求證:AC⊥平面BDE;
(2)求二面角F-BE-D的余弦值;
(3)設(shè)點(diǎn)M是線段BD上一個動點(diǎn),試確定點(diǎn)M的位置,使得AM∥平面BEF,并證明你的結(jié)論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
在空間直角坐標(biāo)系中,在軸上求一點(diǎn)C,使得點(diǎn)C到點(diǎn)
與點(diǎn)
的距離相等,則點(diǎn)C的坐標(biāo)為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖2,四邊形為矩形,
⊥平面
,
,作如圖3折疊,折痕
,其中點(diǎn)
分別在線段
上,沿
折疊后點(diǎn)
疊在線段
上的點(diǎn)記為
,并且
⊥
.(1)證明:
⊥平面
;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱柱中,
底面
.四邊形
為梯形,
,且
.過
三點(diǎn)的平面記為
,
與
的交點(diǎn)為
.
(1)證明:為
的中點(diǎn);
(2)求此四棱柱被平面所分成上下兩部分的體積之比;
(3)若,
,梯形
的面積為6,求平面
與底面
所成二面角大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,
底面
,
,
,
,
,點(diǎn)
為棱
的中點(diǎn).
(1)證明:;
(2)求直線與平面
所成角的正弦值;
(3)若為棱
上一點(diǎn),滿足
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,棱柱ABCD-A1B1C1D1的所有棱長都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°.
(1)證明:BD⊥AA1;
(2)求銳二面角D-A1A-C的平面角的余弦值;
(3)在直線CC1上是否存在點(diǎn)P,使BP∥平面DA1C1?若存在,求出點(diǎn)P的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直角梯形ABCP中,,D是AP的中點(diǎn),E,G分別為PC,CB的中點(diǎn),將三角形PCD沿CD折起,使得PD垂直平面ABCD.(1)若F是PD的中點(diǎn),求證:AP
平面EFG;(2)當(dāng)二面角G-EF-D的大小為
時,求FG與平面PBC所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知,
,設(shè)在線段
上的一點(diǎn)
滿足
=
,則向量
(
為坐標(biāo)原點(diǎn))的坐標(biāo)為 ;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知矩形ABCD和矩形ADEF所在的平面互相垂直,點(diǎn)M,N分別在對角線BD,AE上,且BM=BD,AN=
AE.求證:MN∥平面CDE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com