日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓的離心率為,點在橢圓上.

          (1)求橢圓的方程;

          (2)過橢圓的右焦點作互相垂直的兩條直線、,其中直線交橢圓于兩點,直線交直線點,求證:直線平分線段.

          【答案】(1) (2)見證明

          【解析】

          1)利用,得到,然后代入點即可求解

          2)設(shè)直線,以斜率為核心參數(shù),與橢圓聯(lián)立方程,把兩點全部用參數(shù)表示,得出的中點坐標(biāo)為,然后再求出直線的方程,代入的中點即可證明成立

          (1)由,所以

          由點在橢圓上得解得,

          所求橢圓方程為

          (2)解法一:當(dāng)直線的斜率不存在時,直線平分線段成立

          當(dāng)直線的斜率存在時,設(shè)直線方程為,

          聯(lián)立方程得,消去

          因為過焦點,所以恒成立,設(shè),

          所以的中點坐標(biāo)為

          直線方程為,,可得,

          所以直線方程為,

          滿足直線方程,即平分線段

          綜上所述,直線平分線段

          (2)解法二:因為直線有交點,所以直線的斜率不能為0,

          可設(shè)直線方程為

          聯(lián)立方程得,消去

          因為過焦點,所以恒成立,設(shè),

          ,

          所以的中點坐標(biāo)為

          直線方程為,,由題可得,

          所以直線方程為,

          滿足直線方程,即平分線段

          綜上所述,直線平分線段

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,四邊形為正方形, 平面 , 上一點,且.

          (1)求證: 平面;

          (2)求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐VABCD中,底面ABCD是菱形,對角線ACBD交于點O,VO⊥平面ABCD,E是棱VC的中點.

          1)求證:VA∥平面BDE

          2)求證:平面VAC⊥平面BDE

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

          1)求曲線的普通方程和直線的直角坐標(biāo)方程;

          2)設(shè)點,若直線與曲線相交于兩點,求的值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)數(shù)列的前項和為,且滿足).

          (1)求數(shù)列的通項公式;

          (2)是否存在實數(shù),使得數(shù)列為等差數(shù)列?若存在,求出的值,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】古希臘數(shù)學(xué)家阿波羅尼斯在他的著作《圓錐曲線論》中記載了用平面切割圓錐得到圓錐曲線的方法.如圖,將兩個完全相同的圓錐對頂放置(兩圓錐的軸重合),已知兩個圓錐的底面半徑均為1,母線長均為3,記過圓錐軸的平面為平面(與兩個圓錐側(cè)面的交線為),用平行于的平面截圓錐,該平面與兩個圓錐側(cè)面的交線即雙曲線的一部分,且雙曲線的兩條漸近線分別平行于,則雙曲線的離心率為(

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

          (1)若處取到極小值,求的值及函數(shù)的單調(diào)區(qū)間;

          (2)若當(dāng)時, 恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若函數(shù)在區(qū)間上存在零點,則實數(shù)的取值范圍為( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】工廠質(zhì)檢員從生產(chǎn)線上每半個小時抽取一件產(chǎn)品并對其某個質(zhì)量指標(biāo)進(jìn)行檢測,一共抽取了件產(chǎn)品,并得到如下統(tǒng)計表.該廠生產(chǎn)的產(chǎn)品在一年內(nèi)所需的維護(hù)次數(shù)與指標(biāo)有關(guān),具體見下表.

          質(zhì)量指標(biāo)

          頻數(shù)

          一年內(nèi)所需維護(hù)次數(shù)

          (1)以每個區(qū)間的中點值作為每組指標(biāo)的代表,用上述樣本數(shù)據(jù)估計該廠產(chǎn)品的質(zhì)量指標(biāo)的平均值(保留兩位小數(shù));

          (2)用分層抽樣的方法從上述樣本中先抽取件產(chǎn)品,再從件產(chǎn)品中隨機(jī)抽取件產(chǎn)品,求這件產(chǎn)品的指標(biāo)都在內(nèi)的概率;

          (3)已知該廠產(chǎn)品的維護(hù)費用為元/次,工廠現(xiàn)推出一項服務(wù):若消費者在購買該廠產(chǎn)品時每件多加元,該產(chǎn)品即可一年內(nèi)免費維護(hù)一次.將每件產(chǎn)品的購買支出和一年的維護(hù)支出之和稱為消費費用.假設(shè)這件產(chǎn)品每件都購買該服務(wù),或者每件都不購買該服務(wù),就這兩種情況分別計算每件產(chǎn)品的平均消費費用,并以此為決策依據(jù),判斷消費者在購買每件產(chǎn)品時是否值得購買這項維護(hù)服務(wù)?

          查看答案和解析>>

          同步練習(xí)冊答案