【題目】(某保險公司有一款保險產(chǎn)品的歷史戶獲益率(獲益率=獲益÷保費收入)的頻率分布直方圖如圖所示:
(Ⅰ)試估計平均收益率;
(Ⅱ)根據(jù)經(jīng)驗若每份保單的保費在元的基礎上每增加
元,對應的銷量
(萬份)與
(元)有較強線性相關關系,從歷史銷售記錄中抽樣得到如下
組
與
的對應數(shù)據(jù):
| |||||
銷量 |
(ⅰ)根據(jù)數(shù)據(jù)計算出銷量(萬份)與
(元)的回歸方程為
;
(ⅱ)若把回歸方程當作
與
的線性關系,用(Ⅰ)中求出的平均獲益率估計此產(chǎn)品的獲益率,每份保單的保費定為多少元時此產(chǎn)品可獲得最大獲益,并求出該最大獲益.
參考公示:
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)為了對新研發(fā)的一批產(chǎn)品進行合理定價,將產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:
已知
(1)求的值
(2)已知變量具有線性相關性,求產(chǎn)品銷量
關于試銷單價
的線性回歸方程
可供選擇的數(shù)據(jù)
(3)用表示(2)中所求的線性回歸方程得到的與
對應的產(chǎn)品銷量的估計值。當銷售數(shù)據(jù)
對應的殘差的絕對值
時,則將銷售數(shù)據(jù)
稱為一個“好數(shù)據(jù)”。試求這6組銷售數(shù)據(jù)中的 “好數(shù)據(jù)”。
參考數(shù)據(jù):線性回歸方程中的最小二乘估計分別是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】電視傳媒公司為了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:
非體育迷 | 體育迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.
(1)根據(jù)已知條件完成上面的2×2列聯(lián)表,若按95%的可靠性要求,并據(jù)此資料,你是否認為“體育迷”與性別有關?
(2)現(xiàn)在從該地區(qū)非體育迷的電視觀眾中,采用分層抽樣方法選取5名觀眾,求從這5名觀眾選取兩人進行訪談,被抽取的2名觀眾中至少有一名女生的概率.
附:
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】共享單車的推廣給消費者帶來全新消費體驗,迅速贏得廣大消費者的青睞,然而,同時也暴露出管理、停放、服務等方面的問題,為了了解公眾對共享單車的態(tài)度(提倡或不提倡),某調(diào)查小組隨機地對不同年齡段50人進行調(diào)查,將調(diào)查情況整理如下表:
并且,年齡在和
的人中持“提倡”態(tài)度的人數(shù)分別為5和3,現(xiàn)從這兩個年齡段中隨機抽取2人征求意見.
(Ⅰ)求年齡在中被抽到的2人都持“提倡”態(tài)度的概率;
(Ⅱ)求年齡在中被抽到的2人至少1人持“提倡”態(tài)度的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓與
軸負半軸相交于點
,與
軸正半軸相交于點
.
(1)若過點的直線
被圓
截得的弦長為
,求直線
的方程;
(2)若在以為圓心半徑為
的圓上存在點
,使得
(
為坐標原點),求
的取值范圍;
(3)設是圓
上的兩個動點,點
關于原點的對稱點為
,點
關于
軸的對稱點為
,如果直線
與
軸分別交于
和
,問
是否為定值?若是求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的滿足
,前
項的和為
,且
.
(1)求的值;
(2)設,證明:數(shù)列
是等差數(shù)列;
(3)設,若
,求對所有的正整數(shù)
都有
成立的
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知長方形中,
,
,M為DC的中點.將
沿
折起,使得平面
⊥平面
.
(1)求證:;
(2)若點是線段
上的一動點,問點
在何位置時,二面角
的余弦值為
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,
底面
,底面
為梯形,
,
,且
.
(Ⅰ)若點為
上一點且
,證明:
平面
;
(Ⅱ)求二面角的大;
(Ⅲ)在線段上是否存在一點
,使得
?若存在,求出
的長;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com