日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,圓柱的軸截面是邊長為2的正方形,點是圓弧上的一動點(不與重合),點是圓弧的中點,且點在平面的兩側(cè).

          1)證明:平面平面;

          2)設(shè)點在平面上的射影為點,點分別是的重心,當(dāng)三棱錐體積最大時,回答下列問題.

          (。┳C明:平面

          (ⅱ)求平面與平面所成二面角的正弦值.

          【答案】1)見解析(2)(。┮娊馕觯áⅲ

          【解析】

          1)證明垂直平面內(nèi)的兩條相交直線,再利用面面垂直的判定定理證明即可;

          2)當(dāng)三棱錐體積最大時,點為圓弧的中點,所以點為圓弧的中點,所以四邊形為正方形,且平面.)連接并延長交于點,連接并延長交于點,連接,則,再由線面平行的判定定理證得結(jié)論;()由平面垂直,所以以為坐標(biāo)原點,所在直線為軸建立空間直角坐標(biāo)系,求出平面的法向量,平面的法向量,求兩向量夾角的余弦值,進而得到二面角的正弦值.

          1)因為是軸截面,所以平面,所以,

          又點是圓弧上的一動點(不與重合),且為直徑,所以,

          平面平面,所以平面,而平面,故平面平面.

          2)當(dāng)三棱錐體積最大時,點為圓弧的中點,所以點為圓弧的中點,所以四邊形為正方形,且平面.

          )連接并延長交于點,連接并延長交于點,連接,則,

          因為分別為兩個三角形的重心,,

          所以,又平面平面,所以平面.

          平面垂直,所以以為坐標(biāo)原點,所在直線為軸建立空間直角坐標(biāo)系,如圖所示:

          ,設(shè)平面的法向量,則可取,

          又平面的法向量,

          所以,所以.

          所以平面與平面所成二面角的正弦值為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)討論的單調(diào)性;

          2)設(shè),若有兩個零點,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知AB兩鎮(zhèn)分別位于東西湖岸MNA處和湖中小島的B處,點CA的正西方向1 km處,tanBAN,∠BCN,.現(xiàn)計劃鋪設(shè)一條電纜連通AB兩鎮(zhèn),有兩種鋪設(shè)方案:①沿線段AB在水下鋪設(shè);②在湖岸MN上選一點P,先沿線段AP在地下鋪設(shè),再沿線段PB在水下鋪設(shè),預(yù)算地下、水下的電纜鋪設(shè)費用分別為2萬元km、4萬元km.

          1)求AB兩鎮(zhèn)間的距離;

          2)應(yīng)該如何鋪設(shè),使總鋪設(shè)費用最低?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C的中心在坐標(biāo)原點焦點在x軸上,橢圓C上一點A2,﹣1)到兩焦點距離之和為8.若點B是橢圓C的上頂點,點P,Q是橢圓C上異于點B的任意兩點.

          1)求橢圓C的方程;

          2)若BPBQ,且滿足32的點Dy軸上,求直線BP的方程;

          3)若直線BPBQ的斜率乘積為常數(shù)λλ0),試判斷直線PQ是否經(jīng)過定點.若經(jīng)過定點,請求出定點坐標(biāo);若不經(jīng)過定點,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的長軸長為,焦距為2,拋物線的準(zhǔn)線經(jīng)過橢圓的左焦點.

          1)求橢圓與拋物線的方程;

          2)直線經(jīng)過橢圓的上頂點且與拋物線交于,兩點,直線與拋物線分別交于點(異于點),(異于點),證明:直線的斜率為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)若函數(shù)上單調(diào)遞增,求實數(shù)的取值范圍;

          (2)當(dāng)時,若方程有兩個不等實數(shù)根,,求實數(shù)的取值范圍,并證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了研究不同性別在處理多任務(wù)時的表現(xiàn)差異,召集了男女志愿者各200名,要求他們同時完成多個任務(wù),包括解題、讀地圖、接電話.下圖表示了志愿者完成任務(wù)所需的時間分布.以下結(jié)論,對志愿者完成任務(wù)所需的時間分布圖表理解正確的是(

          ①總體看女性處理多任務(wù)平均用時更短;

          ②所有女性處理多任務(wù)的能力都要優(yōu)于男性;

          ③男性的時間分布更接近正態(tài)分布;

          ④女性處理多任務(wù)的用時為正數(shù),男性處理多任務(wù)的用時為負數(shù).

          A.①④B.②③C.①③D.②④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某縣一中學(xué)的同學(xué)為了解本縣成年人的交通安全意識情況,利用假期進行了一次全縣成年人安全知識抽樣調(diào)查.已知該縣成年人中的擁有駕駛證,先根據(jù)是否擁有駕駛證,用分層抽樣的方法抽取了100名成年人,然后對這100人進行問卷調(diào)查,所得分數(shù)的頻率分布直方圖如下圖所示.規(guī)定分數(shù)在80以上(含80)的為“安全意識優(yōu)秀”.

          擁有駕駛證

          沒有駕駛證

          合計

          得分優(yōu)秀

          得分不優(yōu)秀

          25

          合計

          100

          (1)補全上面的列聯(lián)表,并判斷能否有超過的把握認為“安全意識優(yōu)秀與是否擁有駕駛證”有關(guān)?

          (2)若規(guī)定參加調(diào)查的100人中分數(shù)在70以上(含70)的為“安全意識優(yōu)良”,從參加調(diào)查的100人中根據(jù)安全意識是否優(yōu)良,按分層抽樣的方法抽出5人,再從5人中隨機抽取3人,試求抽取的3人中恰有一人為“安全意識優(yōu)良”的概率.

          附表及公式:,其中.

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】平面直角坐標(biāo)系中,傾斜角為的直線l過點,以原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

          1)寫出直線的參數(shù)方程(為常數(shù))和曲線的直角坐標(biāo)方程;

          2)若直線交于,兩點,且,求傾斜角的值.

          查看答案和解析>>

          同步練習(xí)冊答案