(本小題滿分12分)
設(shè)函數(shù)在
及
時(shí)取得極值.
(I)求的值;
(II)若對(duì)于任意的,都有
成立,求c的取值范圍.
(I)(II)
解析試題分析:(I)由題意知,,
因?yàn)楹瘮?shù)在及
時(shí)取得極值,所以
及
是導(dǎo)函數(shù)的兩個(gè)根,
由韋達(dá)定理知:,即
. ……6分
(II)由(I)知,
所以,
令得:
,
所以當(dāng)時(shí),函數(shù)在
上單調(diào)遞增,在
上單調(diào)遞減, ……8分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/41/a/15s5q2.png" style="vertical-align:middle;" />所以
在
上的最大值為
, ……10分
所以,解得:
. ……12分
考點(diǎn):本小題主要考查由導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值和恒成立問題,考查學(xué)生的轉(zhuǎn)化能力和運(yùn)算求解能力.
點(diǎn)評(píng):函數(shù)的極值點(diǎn)一定是導(dǎo)函數(shù)為零的點(diǎn),但導(dǎo)函數(shù)為零的點(diǎn)不一定是極值點(diǎn);根據(jù)函數(shù)的極值點(diǎn)和端點(diǎn)處的函數(shù)值進(jìn)行比較,就能得出函數(shù)的最值,而恒成立問題一般轉(zhuǎn)化為最值問題進(jìn)行解決.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)函數(shù).
(Ⅰ)若曲線在點(diǎn)
處與直線
相切,求
的值;
(Ⅱ)求函數(shù)的極值點(diǎn)與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù)
(Ⅰ)若函數(shù)在
上為增函數(shù),求正實(shí)數(shù)
的取值范圍;
(Ⅱ)設(shè),求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
本題滿分10分)
設(shè)函數(shù)為奇函數(shù),其圖象在點(diǎn)
處的切線與直線
垂直,導(dǎo)函數(shù)
的最小值為
.試求
,
,
的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)(1)求函數(shù)的導(dǎo)數(shù).
(2)求函數(shù)f(x)=在區(qū)間[0,3]上的積分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù),曲線
過點(diǎn)P(-1,2),且在點(diǎn)P處的切線恰好與直線x-3y=0垂直。
①求a,b的值;
②求該函數(shù)的單調(diào)區(qū)間和極值。
③若函數(shù)在上是增函數(shù),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題14分)設(shè)函數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)已知,若函數(shù)
的圖象總在直線
的下方,求
的取值范圍;
(Ⅲ)記為函數(shù)
的導(dǎo)函數(shù).若
,試問:在區(qū)間
上是否存在
(
)個(gè)正數(shù)
…
,使得
成立?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù)的單調(diào)遞增區(qū)間為
,
(Ⅰ)求證:;
(Ⅱ)當(dāng)取最小值時(shí),點(diǎn)
是函數(shù)
圖象上的兩點(diǎn),若存在
使得
,求證:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com