日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓C的右焦點(diǎn)坐標(biāo)為,且點(diǎn)C上.

          1)求橢圓的方程;

          2)過點(diǎn)的直線lC交于M,N兩點(diǎn),P為線段MN的中點(diǎn),AC的左頂點(diǎn),求直線AP的斜率k的取值范圍.

          【答案】1;(2.

          【解析】

          1)由題意可求出的值,可得橢圓的方程;

          2)當(dāng)直線l的斜率為0時(shí),AP的斜率,當(dāng)直線l的斜率不為0時(shí),設(shè)直線l的方程為,聯(lián)立直線與橢圓,設(shè),,,可得直線AP的斜率關(guān)于的表達(dá)式,由基本不等式可得斜率k的取值范圍.

          解:(1)由題得,解得

          所以,橢圓C的方程為

          2)當(dāng)直線l的斜率為0時(shí),AP的斜率

          當(dāng)直線l的斜率不為0時(shí),設(shè)直線l的方程為

          聯(lián)立方程組,得

          設(shè),,則,

          所以,則,

          而點(diǎn)A的坐標(biāo)為,

          所以直線AP的斜率為

          ①當(dāng)時(shí),

          ②當(dāng)時(shí),

          因?yàn)?/span>,所以,

          從而

          綜上所述,斜率k的取值范圍是

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的一個(gè)焦點(diǎn)為,且在橢圓E上.

          1)求橢圓E的標(biāo)準(zhǔn)方程;

          2)已知垂直于x軸的直線EA、B兩點(diǎn),垂直于y軸的直線EC、D兩點(diǎn),的交點(diǎn)為P,且,間:是否存在兩定點(diǎn)M,N,使得為定值?若存在,求出M,N的坐標(biāo),若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知橢圓的左、右頂點(diǎn)為,上、下頂點(diǎn)為,,記四邊形的內(nèi)切圓為.

          (1)求圓的標(biāo)準(zhǔn)方程;

          (2)已知圓的一條不與坐標(biāo)軸平行的切線交橢圓PM兩點(diǎn).

          (i)求證:;

          (ii)試探究是否為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知如圖,矩形所在平面與底面垂直,在直角梯形中,,,.

          1)求證:平面

          2)求證:平面;

          3)求與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù).

          1)若函數(shù)既有極大值又有極小值,試求實(shí)數(shù)的取值范圍;

          2)設(shè),且,是函數(shù)的兩個(gè)零點(diǎn),求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且nN*).

          (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;

          (Ⅱ)已知等比數(shù)列{bn}是遞增的,且首項(xiàng)b1和公比q分別是方程(x24)(x21)=0實(shí)根,求數(shù)列的前n項(xiàng)和為Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,平面,四邊形為矩形,的中點(diǎn),的中點(diǎn),點(diǎn)在線段上且

          1)證明平面;

          2)當(dāng)為多大時(shí),在線段上存在點(diǎn)使得平面與平面所成角為同時(shí)成立?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知P是圓F1:(x+12+y216上任意一點(diǎn),F210),線段PF2的垂直平分線與半徑PF1交于點(diǎn)Q,當(dāng)點(diǎn)P在圓F1上運(yùn)動(dòng)時(shí),記點(diǎn)Q的軌跡為曲線C.

          1)求曲線C的方程;

          2)記曲線Cx軸交于A,B兩點(diǎn),M是直線x1上任意一點(diǎn),直線MAMB與曲線C的另一個(gè)交點(diǎn)分別為D,E,求證:直線DE過定點(diǎn)H4,0.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (1)若不等式的解集為,求a的值;

          (2)在(1)的條件下,若存在,使,求t的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案