日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓的一個焦點為,且在橢圓E上.

          1)求橢圓E的標(biāo)準(zhǔn)方程;

          2)已知垂直于x軸的直線EAB兩點,垂直于y軸的直線ECD兩點,的交點為P,且,間:是否存在兩定點MN,使得為定值?若存在,求出M,N的坐標(biāo),若不存在,請說明理由.

          【答案】12)存在,兩定點

          【解析】

          1)利用焦點為,且在橢圓E上,利用橢圓定義,即得解;

          2)設(shè)出AB,C,D坐標(biāo),利用,得到P在雙曲線上,結(jié)合雙曲線定義,可得.

          1)由題意得,,橢圓的兩焦點為

          因為點在橢圓C上,

          所以根據(jù)橢圓定義可得:,

          所以,所以,

          所以橢圓E的標(biāo)準(zhǔn)方程為

          2)設(shè),

          ,

          消去,得,

          所以點P在雙曲線上,

          因為T的兩個焦點為,實軸長為,

          所以存在兩定點,

          使得為定值

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在四棱錐中,平面平面PCD,底面ABCD為梯形,,,MPD的中點,過A,B,M的平面與PC交于N.,,,.

          1)求證:NPC中點;

          2)求證:平面PCD;

          3TPB中點,求二面角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了檢測某種零件的一條生產(chǎn)線的生產(chǎn)過程,從生產(chǎn)線上隨機抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)分成,,,,組,得到如圖所示的頻率分布直方圖.若尺寸落在區(qū)間之外,則認(rèn)為該零件屬不合格的零件,其中,分別為樣本平均和樣本標(biāo)準(zhǔn)差,計算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).

          1)若一個零件的尺寸是,試判斷該零件是否屬于不合格的零件;

          2)工廠利用分層抽樣的方法從樣本的前組中抽出個零件,標(biāo)上記號,并從這個零件中再抽取個,求再次抽取的個零件中恰有個尺寸小于的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】《數(shù)書九章》是中國南宋時期杰出數(shù)學(xué)家秦九韶的著作,全書十八卷共八十一個問題,分為九類,每類九個問題,《數(shù)書九章》中記錄了秦九昭的許多創(chuàng)造性成就,其中在卷五三斜求積中提出了已知三角形三邊,,求面積的公式,這與古希臘的海倫公式完成等價,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減上,余四約之,為實,一為從隅,開平方得積.”若把以上這段文字寫成公式,即.現(xiàn)有滿足,且的面積,請運用上述公式判斷下列命題正確的是

          A.周長為

          B.三個內(nèi)角,,成等差數(shù)列

          C.外接圓直徑為

          D.中線的長為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】中,,,AB的垂直平分線分別交AB,ACD、E(圖一),沿DE折起,使得平面平面BDEC(圖二).

          1)若FAB的中點,求證:平面ADE

          2PAC上任意一點,求證:平面平面PBE

          3PAC上一點,且平面PBE,求二面角的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖是某學(xué)校研究性課題《什么樣的活動最能促進同學(xué)們進行垃圾分類》向題的統(tǒng)計圖(每個受訪者都只能在問卷的5個活動中選擇一個),以下結(jié)論錯誤的是( 。

          A. 回答該問卷的總?cè)藬?shù)不可能是100

          B. 回答該問卷的受訪者中,選擇“設(shè)置分類明確的垃圾桶”的人數(shù)最多

          C. 回答該問卷的受訪者中,選擇“學(xué)校團委會宣傳”的人數(shù)最少

          D. 回答該問卷的受訪者中,選擇“公益廣告”的人數(shù)比選擇“學(xué)校要求”的少8

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐中,平面,為等邊三角形,.

          1)證明:

          2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】執(zhí)行如圖所示的程序框圖,則輸出的k的值是(

          A.10 B.11 C.12 D.13

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C的右焦點坐標(biāo)為,且點C上.

          1)求橢圓的方程;

          2)過點的直線lC交于M,N兩點,P為線段MN的中點,AC的左頂點,求直線AP的斜率k的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案