已知函數(shù)在
上是增函數(shù),
上是減函數(shù).
(1)求函數(shù)的解析式;
(2)若時(shí),
恒成立,求實(shí)數(shù)m的取值范圍;
(3)是否存在實(shí)數(shù)b,使得方程在區(qū)間
上恰有兩個(gè)相異實(shí)數(shù)根,若存在,求出b的范圍,若不存在說(shuō)明理由.
⑴;⑵
;⑶
解析試題分析:⑴求導(dǎo)數(shù),求駐點(diǎn),根據(jù)駐點(diǎn)函數(shù)值為0,得到的方程,進(jìn)一步得到函數(shù)解析式.
⑵通過(guò)求導(dǎo)數(shù)、求駐點(diǎn)及駐點(diǎn)的唯一性,得到函數(shù)的最值,使
⑶構(gòu)造函數(shù),即
,
.
利用導(dǎo)數(shù)法,研究函數(shù)的單調(diào)區(qū)間,得增區(qū)間,減區(qū)間
.
從而要使方程有兩個(gè)相異實(shí)根,須有,得解.
試題解析:⑴
依題意得,所以
,從而
2分
⑵
令,得
或
(舍去),所以
6分
⑶設(shè),
即,
. 7分
又,令
,得
;令
,得
.
所以函數(shù)的增區(qū)間
,減區(qū)間
.
要使方程有兩個(gè)相異實(shí)根,則有,解得
考點(diǎn):應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值,函數(shù)與方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)若曲線(xiàn)在x=l和x=3處的切線(xiàn)互相平行,求a的值及函數(shù)
的單調(diào)區(qū)間;
(2)設(shè),若對(duì)任意
,均存在
,使得
,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其中a>0.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若直線(xiàn)是曲線(xiàn)
的切線(xiàn),求實(shí)數(shù)a的值;
(Ⅲ)設(shè),求
在區(qū)間
上的最大值(其中e為自然對(duì)的底數(shù))。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(I)函數(shù)在區(qū)間
上是增函數(shù)還是減函數(shù)?證明你的結(jié)論;
(II)當(dāng)時(shí),
恒成立,求整數(shù)
的最大值;
(Ⅲ)試證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)若在區(qū)間
單調(diào)遞增,求
的最小值;
(2)若,對(duì)
,使
成立,求
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)(
,
),
.
(Ⅰ)證明:當(dāng)時(shí),對(duì)于任意不相等的兩個(gè)正實(shí)數(shù)
、
,均有
成立;
(Ⅱ)記,若
在
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),求
的極值;(2)當(dāng)
時(shí),討論
的單調(diào)性;
(3)若對(duì)任意的恒有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,某自來(lái)水公司要在公路兩側(cè)排水管,公路為東西方向,在路北側(cè)沿直線(xiàn)排水管,在路南側(cè)沿直線(xiàn)
排水管(假設(shè)水管與公路的南,北側(cè)在一條直線(xiàn)上且水管的大小看作為一條直線(xiàn)),現(xiàn)要在矩形區(qū)域ABCD內(nèi)沿直線(xiàn)EF將
與
接通.已知AB = 60m,BC = 60
m,公路兩側(cè)排管費(fèi)用為每米1萬(wàn)元,穿過(guò)公路的EF部分的排管費(fèi)用為每米2萬(wàn)元,設(shè)EF與AB所成角為
.矩形區(qū)域內(nèi)的排管費(fèi)用為W.
(1)求W關(guān)于的函數(shù)關(guān)系式;
(2)求W的最小值及相應(yīng)的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知x=1是函數(shù)的一個(gè)極值點(diǎn),
(Ⅰ)求a的值;
(Ⅱ)當(dāng)時(shí),證明:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com