【題目】如圖所示,四棱錐的側(cè)面
底面
,底面
是直角梯形,且
,
,
是
中點(diǎn).
(1)求證: 平面
;
(2)若,求直線
與平面
所成角的大小.
【答案】(1)證明見解析;(2).
【解析】試題分析:(1)取的中點(diǎn)
,連結(jié)
,易得
,
,從而得
平面
,只需證得
即可;
(2)設(shè)點(diǎn)O,G分別為AD,BC的中點(diǎn),連結(jié),則
,可證得
平面
,故
兩兩垂直,可以點(diǎn)O為原點(diǎn),分別以
的方向?yàn)?/span>
軸的正方向,建立空間直角坐標(biāo)系
,求出平面
的法向量
,利用
即可得解.
試題解析:
(1)證明:取的中點(diǎn)
,連結(jié)
,如圖所示.
因?yàn)?/span>,所以
.
因?yàn)閭?cè)面,
且
,
所以平面
,又
平面
,所以
.
又因?yàn)?/span>,所以
平面
.
因?yàn)辄c(diǎn)是
中點(diǎn),所以
,且
.
又因?yàn)?/span>,且
,所以
,且
,
所以四邊形為平行四邊形,所以
,所以
平面
.
(2)設(shè)點(diǎn)O,G分別為AD,BC的中點(diǎn),連結(jié),則
,
因?yàn)?/span>平面
,
平面
,
所以,所以
.
因?yàn)?/span>,由(Ⅰ)知,
又因?yàn)?/span>,所以
,
所以
所以為正三角形,所以
,
因?yàn)?/span>平面
,
平面
,所以
.
又因?yàn)?/span>,所以
平面
.
故兩兩垂直,可以點(diǎn)O為原點(diǎn),分別以
的方向?yàn)?/span>
軸的正方向,
建立空間直角坐標(biāo)系,如圖所示.
,
,
,
所以,
,
,
設(shè)平面的法向量
,
則所以
取
,則
,
設(shè)與平面
所成的角為
,則
,
因?yàn)?/span>,所以
,所以
與平面
所成角的大小為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市教育局對(duì)該市普通高中學(xué)生進(jìn)行學(xué)業(yè)水平測(cè)試,試卷滿分120分,現(xiàn)從全市學(xué)生中隨機(jī)抽查了10名學(xué)生的成績,其莖葉圖如下圖所示:
(1)已知10名學(xué)生的平均成績?yōu)?8,計(jì)算其中位數(shù)和方差;
(2)已知全市學(xué)生學(xué)習(xí)成績分布服從正態(tài)分布,某校實(shí)驗(yàn)班學(xué)生30人.
①依據(jù)(1)的結(jié)果,試估計(jì)該班學(xué)業(yè)水平測(cè)試成績?cè)?/span>的學(xué)生人數(shù)(結(jié)果四舍五入取整數(shù));
②為參加學(xué)校舉行的數(shù)學(xué)知識(shí)競(jìng)賽,該班決定推薦成績?cè)?/span>的學(xué)生參加預(yù)選賽若每個(gè)學(xué)生通過預(yù)選賽的概率為
,用隨機(jī)變量
表示通過預(yù)選賽的人數(shù),求
的分布列和數(shù)學(xué)期望.
正態(tài)分布參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(1)解不等式;
(2)若關(guān)于的方程
的解集為空集,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面是菱形的四棱錐中,
平面
,
,點(diǎn)
分別為
的中點(diǎn),設(shè)直線
與平面
交于點(diǎn)
.
(1)已知平面平面
,求證:
.
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓(
)的左、右焦點(diǎn)分別為
、
,設(shè)點(diǎn)
,在
中,
,周長為
.
(1)求橢圓的方程;
(2)設(shè)不經(jīng)過點(diǎn)的直線
與橢圓
相交于
、
兩點(diǎn),若直線
與
的斜率之和為
,求證:直線
過定點(diǎn),并求出該定點(diǎn)的坐標(biāo);
(3)記第(2)問所求的定點(diǎn)為,點(diǎn)
為橢圓
上的一個(gè)動(dòng)點(diǎn),試根據(jù)
面積
的不同取值范圍,討論
存在的個(gè)數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(Ⅰ)求函數(shù)的最小值.
(Ⅱ)是否存在一次函數(shù),使得對(duì)于
,總有
,且
成立?若存在,求出
的表達(dá)式;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高中三年級(jí)共有人,其中男生
人,女生
人,為調(diào)查該年級(jí)學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集
位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).
(Ⅰ)應(yīng)收集多少位女生樣本數(shù)據(jù)?
(Ⅱ)根據(jù)這個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖(如圖所示).其中樣本數(shù)據(jù)分組區(qū)間為:
,
,
,
,
,
.估計(jì)該年組學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過
個(gè)小時(shí)的概率.
(Ⅲ)在樣本數(shù)據(jù)中,有位女生的每周平均體育運(yùn)動(dòng)時(shí)間超過
個(gè)小時(shí).請(qǐng)完成每周平均體育運(yùn)動(dòng)時(shí)間與性別的列聯(lián)表,并判斷是否有
的把握認(rèn)為“該年級(jí)學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有兩個(gè)極值點(diǎn)
.
(1)求實(shí)數(shù)的取值范圍;
(2)設(shè),若函數(shù)
的兩個(gè)極值點(diǎn)恰為函數(shù)
的兩個(gè)零點(diǎn),當(dāng)
時(shí),求
的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com