【題目】已知函數(shù),
.
(Ⅰ)求函數(shù)的最小值.
(Ⅱ)是否存在一次函數(shù),使得對(duì)于
,總有
,且
成立?若存在,求出
的表達(dá)式;若不存在,說明理由.
【答案】(Ⅰ).(Ⅱ)
.
【解析】試題分析:(1)表示出,用導(dǎo)數(shù)判斷其單調(diào)性,根據(jù)單調(diào)性即可求出最小值;
(2)由(Ⅰ)知,從而得
,于是h(x)可表示為關(guān)于k的一次函數(shù),根據(jù)f(x)≥h(x)恒成立可求得k值,從而可求得h(x)表達(dá)式,再驗(yàn)證h(x))≥g(x)對(duì)一切x>0恒成立即可;
試題解析:(Ⅰ) 的定義域?yàn)?/span>
,
,
,
易知時(shí),
,
時(shí),
,
∴在
上單調(diào)遞減,在
上單調(diào)遞增,
∴當(dāng)時(shí),
取得最小值為
.
(Ⅱ)由(Ⅰ)知, ,
所以,
故可證,代入
,
得恒成立,
∴,
∴,
,
設(shè),則
,
當(dāng)時(shí),
,當(dāng)
時(shí),
,
∴在
上單調(diào)遞減,在
上單調(diào)遞增,
∴,
即對(duì)一切
恒成立,
綜上,存在一次函數(shù),使得對(duì)于
,總有
,
且,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
設(shè)函數(shù)f(x)=e2x-aln x.
(1)討論f(x)的導(dǎo)函數(shù)f′(x)零點(diǎn)的個(gè)數(shù);
(2)證明:當(dāng)a>0時(shí),f(x)≥2a+aln.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(1)解不等式;
(2)若關(guān)于的方程
的解集為空集,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐的側(cè)面
底面
,底面
是直角梯形,且
,
,
是
中點(diǎn).
(1)求證: 平面
;
(2)若,求直線
與平面
所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列,
,
,
滿足
,且當(dāng)
時(shí),
,令
.
(Ⅰ)寫出的所有可能的值.
(Ⅱ)求的最大值.
(Ⅲ)是否存在數(shù)列,使得
?若存在,求出數(shù)列
;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,點(diǎn)
的極坐標(biāo)為
,直線
的極坐標(biāo)方程為
,且
過點(diǎn)
,曲線
的參考方程為
(
為參數(shù)).
(1)求曲線上的點(diǎn)到直線
的距離的最大值與最小值;
(2)過點(diǎn)與直線
平行的直線
與曲
線交于
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以
為極點(diǎn),
軸非負(fù)半軸為極軸建立坐標(biāo)系,已知曲線
的極坐標(biāo)方程為
,直線
的參數(shù)方程為:
(
為參數(shù)),兩曲線相交于
兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線
的普通方程;
(2)若求
的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com