設(shè)為拋物線
(
)的焦點(diǎn),
為該拋物線上三點(diǎn),若
,且
(Ⅰ)求拋物線的方程;
(Ⅱ)點(diǎn)的坐標(biāo)為(
,
)其中
,過(guò)點(diǎn)F作斜率為
的直線與拋物線交于
、
兩點(diǎn),
、
兩點(diǎn)的橫坐標(biāo)均不為
,連結(jié)
、
并延長(zhǎng)交拋物線于
、
兩點(diǎn),設(shè)直線
的斜率為
.若
,求
的值.
(Ⅰ)(Ⅱ)
.
解析試題分析:(Ⅰ)利用向量和為0得到三點(diǎn)橫坐標(biāo)和的關(guān)系,結(jié)合三個(gè)向量的模為6得到的值,求出拋物線的方程;(Ⅱ)通過(guò)點(diǎn)坐標(biāo)表示斜率,設(shè)直線方程,聯(lián)立直線方程與拋物線方程利用韋達(dá)定理得到關(guān)于
的方程,計(jì)算得到
.
(Ⅰ)設(shè)
則 2分
, 所以
.
4分
所以,所以
為所求. 5分
(Ⅱ)設(shè)
則,同理
7分
所以
設(shè)AC所在直線方程為,
聯(lián)立得,
,所以
, 9分
同理,
.
所以 11分
設(shè)AB所在直線方程為,聯(lián)立
得,
,
所以 12分
考點(diǎn):拋物線標(biāo)準(zhǔn)方程,直線與拋物線聯(lián)立,韋達(dá)定理應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知:直線與⊙C:
(
)
(1)若直線與⊙C相交,求
的取值范圍。
(2)在(1)的條件下,設(shè)直線與⊙C交于A、B兩點(diǎn),若OA⊥OB,求
的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知向量a=,b=
,且x∈
.
(1)求a·b及|a+b|;
(2)若f(x)=a·b-2λ|a+b|的最小值為-,求正實(shí)數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知平面向量,
,
,其中
,且函數(shù)
的圖象過(guò)點(diǎn)
.
(1)求的值;
(2)將函數(shù)圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的的2倍,縱坐標(biāo)不變,得到函數(shù)
的圖象,求函數(shù)
在
上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知數(shù)列{an}的前n項(xiàng)和Sn=2n+1-2,等差數(shù)列{bn}中,b2=a2,且bn+3+bn-1=2bn+4,(n2,n
N+),則bn=
A.2n+2 | B.2n | C.n-2 | D.2n-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
如圖,第(1)個(gè)圖案由1個(gè)點(diǎn)組成,第(2)個(gè)圖案由3個(gè)點(diǎn)組成,第(3)個(gè)圖案由7個(gè)點(diǎn)組成,第(4)個(gè)圖案由13個(gè)點(diǎn)組成,第(5)個(gè)圖案由21個(gè)點(diǎn)組成,……,依此類推,根據(jù)圖案中點(diǎn)的排列規(guī)律,第100個(gè)圖形由多少個(gè)點(diǎn)組成( )
A.9900 | B.9901 | C.9902 | D.9903 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
在正項(xiàng)數(shù)列{an}中,若a1=1,且對(duì)所有n∈N*滿足nan+1-(n+1)an=0,則a2014=( )
A.1011 | B.1012 | C.2013 | D.2014 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com