【題目】已知正方形的邊長(zhǎng)為2,分別以
,
為一邊在空間中作正三角形
,
,延長(zhǎng)
到點(diǎn)
,使
,連接
,
.
(1)證明: 平面
;
(2)求點(diǎn)到平面
的距離.
【答案】(1)見(jiàn)解析;(2)1.
【解析】試題分析:(1)證線(xiàn)面垂直,先證線(xiàn)線(xiàn)垂直,做出輔助線(xiàn),根據(jù)長(zhǎng)度關(guān)系,首先證得,再證得
,
,根據(jù)線(xiàn)面垂直的判定定理得到線(xiàn)面垂直;(2)根據(jù)條件可得到
平面
,進(jìn)而點(diǎn)
到平面
的距離等于
點(diǎn)到平面
的距離,取
的中點(diǎn)為
,連接
,
平面
,
為點(diǎn)
到平面
的距離.
解析:
(1)連接交
于點(diǎn)
,并連接
,則
,又∵
,
∴,又∵
,∴
,∴
,
∵,∴
平面
,∵
平面
,∴
,
∵,
,∴
,∴
,
即,∵
,∴
平面
.
(2)由題知, ,且
,可得四邊形
為平行四邊形,∴
,
又∵平面
,∴
平面
,∵點(diǎn)
,∴點(diǎn)
到平面
的距離等于
點(diǎn)到平面
的距離,取
的中點(diǎn)為
,連接
,則由(1)可得
.
在中,
,則
,∴
,∴
平面
,即
為點(diǎn)
到平面
的距離.
在中,
,得點(diǎn)
到平面
的距離為1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某家電公司根據(jù)銷(xiāo)售區(qū)域?qū)N(xiāo)售員分成兩組.2017年年初,公司根據(jù)銷(xiāo)售員的銷(xiāo)售業(yè)績(jī)分發(fā)年終獎(jiǎng),銷(xiāo)售員的銷(xiāo)售額(單位:十萬(wàn)元)在區(qū)間
內(nèi)對(duì)應(yīng)的年終獎(jiǎng)分別為2萬(wàn)元,2.5萬(wàn)元,3萬(wàn)元,3.5萬(wàn)元.已知200名銷(xiāo)售員的年銷(xiāo)售額都在區(qū)間
內(nèi),將這些數(shù)據(jù)分成4組:
,得到如下兩個(gè)頻率分布直方圖:
以上面數(shù)據(jù)的頻率作為概率,分別從組與
組的銷(xiāo)售員中隨機(jī)選取1位,記
分別表示
組與
組被選取的銷(xiāo)售員獲得的年終獎(jiǎng).
(1)求的分布列及數(shù)學(xué)期;
(2)試問(wèn)組與
組哪個(gè)組銷(xiāo)售員獲得的年終獎(jiǎng)的平均值更高?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018河南豫南九校高三下學(xué)期第一次聯(lián)考】設(shè)函數(shù).
(I)當(dāng)時(shí),
恒成立,求
的范圍;
(II)若在
處的切線(xiàn)為
,且方程
恰有兩解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市為鼓勵(lì)人們綠色出行,乘坐地鐵,地鐵公司決定按照乘客經(jīng)過(guò)地鐵站的數(shù)量實(shí)施分段優(yōu)惠政策,不超過(guò)站的地鐵票價(jià)如下表:
乘坐站數(shù) | |||
票價(jià)(元) |
現(xiàn)有甲、乙兩位乘客同時(shí)從起點(diǎn)乘坐同一輛地鐵,已知他們乘坐地鐵都不超過(guò)站,且他們各自在每個(gè)站下車(chē)的可能性是相同的.
(1)若甲、乙兩人共付費(fèi)元,則甲、乙下車(chē)方案共有多少種?
(2)若甲、乙兩人共付費(fèi)元,求甲比乙先到達(dá)目的地的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是函數(shù)
的導(dǎo)函數(shù),且對(duì)任意的實(shí)數(shù)
都有
(
是自然對(duì)數(shù)的底數(shù)),
,若不等式
的解集中恰有兩個(gè)整數(shù),則實(shí)數(shù)
的取值范圍是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)在第一象限內(nèi)的點(diǎn)
到焦點(diǎn)
的距離為
.
(1)若,過(guò)點(diǎn)
,
的直線(xiàn)
與拋物線(xiàn)相交于另一點(diǎn)
,求
的值;
(2)若直線(xiàn)與拋物線(xiàn)
相交于
兩點(diǎn),與圓
相交于
兩點(diǎn),
為坐標(biāo)原點(diǎn),
,試問(wèn):是否存在實(shí)數(shù)
,使得
的長(zhǎng)為定值?若存在,求出
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018廣東省深中、華附、省實(shí)、廣雅四校聯(lián)考】已知橢圓的離心率為
,圓
與
軸交于點(diǎn)
,
為橢圓
上的動(dòng)點(diǎn),
,
面積最大值為
.
(I)求圓與橢圓
的方程;
(II)圓的切線(xiàn)
交橢圓于點(diǎn)
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹(shù)上摘下100個(gè)芒果,其質(zhì)量分別在,
,
,
,
,
(單位:克)中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.
(1) 經(jīng)計(jì)算估計(jì)這組數(shù)據(jù)的中位數(shù);
(2)現(xiàn)按分層抽樣從質(zhì)量為,
的芒果中隨機(jī)抽取
個(gè),再?gòu)倪@
個(gè)中隨機(jī)抽取
個(gè),求這
個(gè)芒果中恰有
個(gè)在
內(nèi)的概率.
(3)某經(jīng)銷(xiāo)商來(lái)收購(gòu)芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有個(gè),經(jīng)銷(xiāo)商提出如下兩種收購(gòu)方案:
A:所以芒果以元/千克收購(gòu);
B:對(duì)質(zhì)量低于克的芒果以
元/個(gè)收購(gòu),高于或等于
克的以
元/個(gè)收購(gòu).
通過(guò)計(jì)算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著“互聯(lián)網(wǎng)+交通”模式的迅猛發(fā)展,“共享自行車(chē)”在很多城市相繼出現(xiàn).某運(yùn)營(yíng)公司為了了解某地區(qū)用戶(hù)對(duì)其所提供的服務(wù)的滿(mǎn)意度,隨機(jī)調(diào)查了40個(gè)用戶(hù),得到用戶(hù)的滿(mǎn)意度評(píng)分如下:
用系統(tǒng)抽樣法從40名用戶(hù)中抽取容量為10的樣本,且在第一分段里隨機(jī)抽到的評(píng)分?jǐn)?shù)據(jù)為92.
(1)請(qǐng)你列出抽到的10個(gè)樣本的評(píng)分?jǐn)?shù)據(jù);
(2)計(jì)算所抽到的10個(gè)樣本的均值和方差
;
(3)在(2)條件下,若用戶(hù)的滿(mǎn)意度評(píng)分在之間,則滿(mǎn)意度等級(jí)為“
級(jí)”.試應(yīng)用樣本估計(jì)總體的思想,估計(jì)該地區(qū)滿(mǎn)意度等級(jí)為“
級(jí)”的用戶(hù)所占的百分比是多少?(精確到
)
參考數(shù)據(jù):.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com