【題目】在直角坐標(biāo)系中,曲線
:
與直線
:
交于
,
兩點(diǎn).
(1)若的面積為
,求
;
(2)軸上是否存在點(diǎn)
,使得當(dāng)
變動(dòng)時(shí),總有
?若存在,求以線段
為直徑的圓的方程;若不存在,請(qǐng)說明理由.
【答案】(1)(2)存在,方程為
(或
)
【解析】
(1)聯(lián)立直線與拋物線方程,設(shè)出,
兩點(diǎn)坐標(biāo),結(jié)合韋達(dá)定理,由弦長公式求出
,由點(diǎn)到直線距離公式求出
到
的距離,再由
即可求出結(jié)果;
(2)等價(jià)于直線
,
傾斜角互補(bǔ),所以只需求出使直線
,
斜率之和為
的
點(diǎn)坐標(biāo)即可,進(jìn)而可求出結(jié)果.
解:(1)將代入
,得
,
設(shè),
,則
,
,
從而
.
因?yàn)?/span>到
的距離為
,
所以的面積
,
解得.
(2)存在符合題意的點(diǎn),證明如下:
設(shè)為符合題意的點(diǎn),直線
,
的斜率分別為
,
.
從而
.
當(dāng)時(shí),有
,則直線
的傾斜角與直線
的傾斜角互補(bǔ),
故,所以點(diǎn)
符合題意.
故以線段為直徑的圓的方程為
(或
)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,我國工業(yè)經(jīng)濟(jì)發(fā)展迅速,工業(yè)增加值連年攀升,某研究機(jī)構(gòu)統(tǒng)計(jì)了近十年(從2008年到2017年)的工業(yè)增加值(萬億元),如下表:
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
工業(yè)增加值 | 13.2 | 13.8 | 16.5 | 19.5 | 20.9 | 22.2 | 23.4 | 23.7 | 24.8 | 28 |
依據(jù)表格數(shù)據(jù),得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
5.5 | 20.6 | 82.5 | 211.52 | 129.6 |
(1)根據(jù)散點(diǎn)圖和表中數(shù)據(jù),此研究機(jī)構(gòu)對(duì)工業(yè)增加值(萬億元)與年份序號(hào)
的回歸方程類型進(jìn)行了擬合實(shí)驗(yàn),研究人員甲采用函數(shù)
,其擬合指數(shù)
;研究人員乙采用函數(shù)
,其擬合指數(shù)
;研究人員丙采用線性函數(shù)
,請(qǐng)計(jì)算其擬合指數(shù),并用數(shù)據(jù)說明哪位研究人員的函數(shù)類型擬合效果最好.(注:相關(guān)系數(shù)
與擬合指數(shù)
滿足關(guān)系
).
(2)根據(jù)(1)的判斷結(jié)果及統(tǒng)計(jì)值,建立關(guān)于
的回歸方程(系數(shù)精確到0.01);
(3)預(yù)測(cè)到哪一年的工業(yè)增加值能突破30萬億元大關(guān).
附:樣本
的相關(guān)系數(shù)
,
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則取它的項(xiàng):第一次取1;第二次取2個(gè)連續(xù)偶數(shù)2,4;第三次取3個(gè)連續(xù)奇數(shù)5,7,9;第四次取4個(gè)連續(xù)偶數(shù)10,12,14,16;第五次取5個(gè)連續(xù)奇數(shù)17,19,21,23,25,按此規(guī)律取下去,得到一個(gè)子數(shù)列1,2,4,5,7,9,10,12,14,16,17,19…,則在這個(gè)子數(shù)中第2014個(gè)數(shù)是( )
A. 3965 B. 3966 C. 3968 D. 3989
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為
.現(xiàn)以極點(diǎn)
為原點(diǎn),極軸為
軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線
的參數(shù)方程為
(
為參數(shù)).
(1)求曲線的直角坐標(biāo)系方程和直線
的普通方程;
(2)點(diǎn)在曲線
上,且到直線
的距離為
,求符合條件的
點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知五棱錐P-ABCDE,其中ABE,
PCD均為正三角形,四邊形BCDE為等腰梯形,BE=2BC=2CD=2DE=4,PB=PE=
.
(Ⅰ)求證:平面PCD⊥平面ABCDE;
(Ⅱ)若線段AP上存在一點(diǎn)M,使得三棱錐P-BEM的體積為五棱錐P-ABCDE體積的,求AM的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線,橢圓
分別為橢圓的左、右焦點(diǎn).
(1)當(dāng)直線過右焦點(diǎn)
時(shí),求橢圓
的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓
交于
兩點(diǎn),
為坐標(biāo)原點(diǎn),且
,若點(diǎn)
在以線段
為直徑的圓內(nèi),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com