日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情

          【題目】橢圓 過點 ,離心率為 ,左、右焦點分別為F1 , F2 , 過F1的直線交橢圓于A,B兩點. (Ⅰ)求橢圓C的方程;
          (Ⅱ)當△F2AB的面積為 時,求直線的方程.

          【答案】解:(Ⅰ)∵橢圓 過點 , ∴ ①,
          又∵離心率為 ,
          ,∴ ②,
          聯立①②得a2=4,b2=3.
          ∴橢圓的方程為:
          (Ⅱ)①當直線的傾斜角為 時, ,
          = = ,不適合題意.
          ②當直線的傾斜角不為 時,設直線方程l:y=k(x+1),
          代入 得:(4k2+3)x2+8k2x+4k2﹣12=0
          設A(x1 , y1),B(x2 , y2),則 ,
          ∴|AB|= = =
          點F2到直線l的距離d= ,
          = = = ,
          化為17k4+k2﹣18=0,解得k2=1,∴k=±1,
          ∴直線方程為:x﹣y+1=0或x+y+1=0
          【解析】(Ⅰ)由于橢圓 過點 ,離心率為 ,可得 , ,即可解出.(Ⅱ)對直線l的斜率分類討論,與橢圓的方程聯立可得根與系數的關系,再利用弦長公式、點到直線的距離公式、三角形的面積計算公式即可得出.

          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          【題目】已知△ABC的周長為 +1,且sinA+sinB= sinC (I)求邊AB的長;
          (Ⅱ)若△ABC的面積為 sinC,求角C的度數.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】若當x∈R時,函數f(x)=a|x|始終滿足0<|f(x)|≤1,則函數y=loga| |的圖象大致為( )
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】如圖,在三棱柱ABC﹣A1B1C1中,側面ABB1A1 , ACC1A1均為正方形,∠BAC=90°,點D是棱B1C1的中點.請建立適當的坐標系,求解下列問題: (Ⅰ)求證:異面直線A1D與BC互相垂直;
          (Ⅱ)求二面角(鈍角)D﹣A1C﹣A的余弦值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知a≥0,函數f(x)=(x2﹣2ax)ex , 若f(x)在[﹣1,1]上是單調減函數,則a的取值范圍是(
          A.0<a<
          B. <a<
          C.a≥
          D.0<a<

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】若函數 內任取兩個實數p,q,且p≠q,不等式 恒成立,則a的取值范圍是(
          A.[﹣1,0]
          B.[﹣1,+∞)
          C.[0,3]
          D.[3,+∞)

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】設a為實數,函數f(x)=ex﹣x+a,x∈R.
          (1)求f(x)在區(qū)間[﹣1,2]上的最值;
          (2)求證:當a>﹣1,且x>0時,

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知f(x)的定義域是(0,+∞),f'(x)為f(x)的導函數,且滿足f(x)<f'(x),則不等式 f(2)的解集是(
          A.(﹣∞,2)∪(1,+∞)
          B.(﹣2,1)
          C.(﹣∞,﹣1)∪(2,+∞)
          D.(﹣1,2)

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知a∈R,函數f(x)=log2 +a).
          (1)當a=5時,解不等式f(x)>0;
          (2)若關于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一個元素,求a的取值范圍.
          (3)設a>0,若對任意t∈[ ,1],函數f(x)在區(qū)間[t,t+1]上的最大值與最小值的差不超過1,求a的取值范圍.

          查看答案和解析>>

          同步練習冊答案