日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. cos
          4
          +tan(-
          6
          )+sin21π的值為( 。
          A、
          2
          2
          -
          3
          3
          B、
          3
          3
          -
          2
          2
          C、
          3
          3
          -
          3
          2
          D、
          3
          2
          -
          3
          3
          考點(diǎn):運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值
          專題:三角函數(shù)的求值
          分析:原式各項(xiàng)中的角度變形后,利用誘導(dǎo)公式化簡(jiǎn),再利用特殊角的三角函數(shù)值計(jì)算即可得到結(jié)果.
          解答: 解:原式=cos(2π+
          π
          4
          )-tan(π+
          π
          6
          )+sin(20π+π)=cos
          π
          4
          -tan
          π
          6
          +sinπ=
          2
          2
          -
          3
          2

          故選:A.
          點(diǎn)評(píng):此題考查了運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=sin(ωx+
          π
          4
          )(ω>0),若存在實(shí)數(shù)x0使得對(duì)任意的實(shí)數(shù)x,都有f(x0)≤f(x)≤f(x0+2013)成立,則ω的最小值是( 。
          A、
          π
          2013
          B、
          π
          4026
          C、
          1
          2013
          D、
          1
          4026

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知Ω={(x,y)|x+y≤6,x≥0,y≥0},A={(x,y)|x≥4,y≥0,x-2y≥0},若向區(qū)域Ω內(nèi)隨機(jī)投一點(diǎn)P,則點(diǎn)P落在區(qū)域A內(nèi)的概率為( 。
          A、
          1
          3
          B、
          2
          9
          C、
          1
          9
          D、
          4
          9

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知sinxcosy=
          1
          2
          ,則cosxsiny的取值范圍是( 。
          A、[-
          1
          2
          1
          2
          ]
          B、[-
          3
          2
          ,
          1
          2
          ]
          C、[-
          1
          2
          ,
          3
          2
          ]
          D、[-1,1]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若α∈(0,
          π
          4
          ),β∈(0,π)且tan(a-β)=
          1
          2
          ,tanβ=-
          1
          7
          ,則2α-β( 。
          A、-
          6
          B、-
          3
          C、-
          7
          12
          π
          D、-
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          下列命題中正確命題的個(gè)數(shù)是(  )
          (1)對(duì)于命題p:?x∈R,使得x2+x+1<0,則¬P:?x∈R,均有x2+x+1>0;
          (2)m=3是直線(m+3)x+my-2=0與直線mx-6y+5=0互相垂直的充要條件;
          (3)已知回歸直線的斜率的估計(jì)值為1.23,樣本點(diǎn)的中心為(4,5),則回歸直線方程為
          ?
          y
          =1.23x+0.08
          (4)若函數(shù)f(x)是定義在R上的奇函數(shù),且f(x+4)=f(x),則f(2012)=0.
          A、2B、3C、4D、1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知平面向量
          a
          ,
          b
          滿足|
          a
          |=1,|
          b
          |=2,且(
          a
          -
          b
          )⊥
          a
          ,則
          a
          b
          的夾角為( 。
          A、
          π
          6
          B、
          π
          3
          C、
          3
          D、
          6

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
          π
          2
          )的圖象與y軸的交點(diǎn)為(0,1),它在y軸右側(cè)的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn)的坐標(biāo)分別為(x0,2)和(x0+2π,-2).
          (1)求函數(shù)f(x)的解析式及x0的值;
          (2)在△ABC中,角A,B,C成等差數(shù)列,求f(x)在[B,x0)上的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          1
          x-a
          +
          λ
          x-b
          (a,b,λ為實(shí)常數(shù)).
          (1)若λ=-1,a=1.
          ①當(dāng)b=-1時(shí),求函數(shù)f(x)的圖象在點(diǎn)(
          2
          ,f(
          2
          ))處的切線方程;
          ②當(dāng)b<0時(shí),求函數(shù)f(x)在[
          1
          3
          ,
          1
          2
          ]上的最大值.
          (2)若λ=1,b<a,求證:不等式f(x)≥1的解集構(gòu)成的區(qū)間長(zhǎng)度D為定值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案