日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=x+ ﹣3lnx(a∈R).
          (1)若x=3是f(x)的一個極值點,求a值及f(x)的單調(diào)區(qū)間;
          (2)當(dāng)a=﹣2時,求f(x)在區(qū)間[1,e]上的最值.

          【答案】
          (1)解:函數(shù)f(x)的定義域為(0,+∞),

          由題有f′(x)=1﹣

          所以由x=3是函數(shù)f(x)的一個極值點得f′(3)=1﹣ ﹣1=0,解得:a=0,

          此時f′(x)=1﹣ = ,

          所以,當(dāng)x>3時,f′(x)>0;當(dāng)0<x<3時,f′(x)<0,

          即函數(shù)f(x)在(3,+∞)單調(diào)遞增;在(0,3)單調(diào)遞減.

          所以函數(shù)f(x)的單調(diào)遞增區(qū)間為(3,+∞),單調(diào)遞減區(qū)間為(0,3)


          (2)解:因為a=﹣2,所以f(x)=x﹣ ﹣3lnx,

          f′(x)=1+ =

          所以,當(dāng)0<x<1或x>2時,f′(x)>0;當(dāng)1<x<2時,f′(x)<0,

          所以函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,1)和(2,+∞);單調(diào)遞減區(qū)間為(1,2),

          又x∈[1,e],所以f(x)在[1,2]遞減,在[2,e]遞增,

          所以f(x)的最小值f(x)min=f(2)=1﹣3ln2,

          又f(1)=﹣1,f(e)=e﹣ ﹣3及f(e)﹣f(1)=e﹣ ﹣2<2.72﹣ ﹣2= <0,

          所以f(x)的最大值為f(x)max=f(1)=﹣1


          【解析】(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;(2)根據(jù)函數(shù)的單調(diào)性求出f(x)的最小值,計算f(e),f(1)的大小,求出f(x)的最大值即可.
          【考點精析】解答此題的關(guān)鍵在于理解函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識,掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值,以及對函數(shù)的最大(小)值與導(dǎo)數(shù)的理解,了解求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值比較,其中最大的是一個最大值,最小的是最小值.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓 + =1與x軸交于A、B兩點,過橢圓上一點P(x0 , y0)(P不與A、B重合)的切線l的方程為 + =1,過點A、B且垂直于x軸的垂線分別與l交于C、D兩點,設(shè)CB、AD交于點Q,則點Q的軌跡方程為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) .
          (1)證明 有且只有一個零點;
          (2)求這個零點所在的一個區(qū)間,使這個區(qū)間的長度不大于 .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某射擊隊有8名隊員,其中男隊員5名,女隊員3名,從中隨機選3名隊員參加射擊表演活動.
          (1)求選出的3名隊員中有一名女隊員的概率;
          (2)求選出的3名隊員中女隊員人數(shù)比男隊員人數(shù)多的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直角梯形 中, , , 為線段 的中點,將 沿 折起,使平面 平面 ,得到幾何體 .

          (1)若 分別為線段 的中點,求證: 平面
          (2)求證: 平面 ;
          (3)求 的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知 的最大值為 ,若存在實數(shù) ,使得對任意實數(shù) 總有 成立,則 的最小值為( )
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對于數(shù)據(jù)3,3,2,3,6,3,10,3,6,3,2.
          ①這組數(shù)據(jù)的眾數(shù)是3;
          ②這組數(shù)據(jù)的眾數(shù)與中位數(shù)的數(shù)值不相等;
          ③這組數(shù)據(jù)的中位數(shù)與平均數(shù)的數(shù)值相等;
          ④這組數(shù)據(jù)的平均數(shù)與眾數(shù)的值相等.
          其中正確的結(jié)論的個數(shù)( )
          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】觀察下列各式: C =40;
          C +C =41;
          C +C +C =42;
          C +C +C +C =43;

          照此規(guī)律,當(dāng)n∈N*時,
          C +C +C +…+C =

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱柱 中, ,底面三角形 是邊長為2的等邊三角形, 的中點.

          (1)求證: ;
          (2)若直線 與平面 所成的角為 ,求三棱柱 的體積.

          查看答案和解析>>

          同步練習(xí)冊答案