日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓過拋物線的焦點,分別是橢圓的左、右焦點,且.

          (1)求橢圓的標(biāo)準(zhǔn)方程;

          (2)若直線與拋物線相切,且與橢圓交于兩點,求面積的最大值.

          【答案】(1);(2)1.

          【解析】試題分析:(1)由已知,求出拋物線的焦點的坐標(biāo),可求得橢圓的值,分別求出向量的坐標(biāo),由向量數(shù)量積的公式及,從而求橢圓的標(biāo)準(zhǔn)方程;(2)因為直線與拋物線相切,由切點可設(shè)直線方程為,再聯(lián)立直線與橢圓方程,由弦長公式,求得的長,由點到直線的距離公式求得原點到的距離,列出面積的計算式子,從而求得面積的最大值.

          試題解析:(1),又.,

          橢圓的標(biāo)準(zhǔn)方程為.

          (2)設(shè)直線與拋物線相切于點,則,即,

          聯(lián)立直線與橢圓,消去,整理得.

          ,得.

          設(shè),則:.

          原點到直線的距離.

          面積 ,

          當(dāng)且僅當(dāng),即取等號,

          面積的最大值為1.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,圓的方程為.

          (1)求的普通方程和的直角坐標(biāo)方程;

          (2)當(dāng)時,相交于,兩點,求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐中,,,,,點中點.

          (1)求證:

          (2)求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù).

          (1)若,試討論函數(shù)的單調(diào)性;

          (2)若有兩個零點,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了調(diào)查學(xué)生數(shù)學(xué)學(xué)習(xí)的質(zhì)量情況,某校從高二年級學(xué)生(其中男生與女生的人數(shù)之比為)中,采用分層抽樣的方法抽取名學(xué)生依期中考試的數(shù)學(xué)成績進(jìn)行統(tǒng)計.根據(jù)數(shù)學(xué)的分?jǐn)?shù)取得了這名同學(xué)的數(shù)據(jù),按照以下區(qū)間分為八組:

          ,②,③,④,⑤,⑥,⑦,⑧

          得到頻率分布直方圖如圖所示.已知抽取的學(xué)生中數(shù)學(xué)成績少于分的人數(shù)為人.

          (1)求的值及頻率分布直方圖中第④組矩形條的高度;

          (2)如果把“學(xué)生數(shù)學(xué)成績不低于分”作為是否達(dá)標(biāo)的標(biāo)準(zhǔn),對抽取的名學(xué)生,完成下列列聯(lián)表:

          據(jù)此資料,你是否認(rèn)為“學(xué)生性別”與“數(shù)學(xué)成績達(dá)標(biāo)與否”有關(guān)?

          (3)若從該校的高二年級學(xué)生中隨機抽取人,記這人中成績不低于分的學(xué)生人數(shù)為,求的分布列、數(shù)學(xué)期望和方差

          附1:“列聯(lián)表”的卡方統(tǒng)計量公式:

          附2:卡方()統(tǒng)計量的概率分布表:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】橢圓離心率為,是橢圓的左、右焦點,以為圓心,為半徑的圓和以為圓心、為半徑的圓的交點在橢圓上.

          (1)求橢圓的方程;

          (2)設(shè)橢圓的下頂點為,直線與橢圓交于兩個不同的點,是否存在實數(shù)使得以為鄰邊的平行四邊形為菱形?若存在,求出的值;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐P-ABCD中,平面PAD⊥底面 ABCD,側(cè)棱PA=PD,底面ABCD為直角梯形,其中BC∥AD AB⊥AD,AD=2AB=2BC=2,OAD中點.

          )求證:PO⊥平面ABCD;

          )線段AD上是否存在點,使得它到平面PCD的距離為?若存在,求出值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.

          (1)寫出直線的普通方程及曲線的直角坐標(biāo)方程;

          (2)已知點,點,直線過點且與曲線相交于,兩點,設(shè)線段的中點為,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線與曲線恰有兩個不同的交點,記的所有可能取值構(gòu)成集合,是橢圓上一動點,點與點關(guān)于直線對稱,記的所有可能取值構(gòu)成集合,若隨機從集合中分別抽出一個元素,則的概率是___

          查看答案和解析>>

          同步練習(xí)冊答案