【題目】如圖,已知拋物線,直線
交拋物線于
,
兩點(diǎn),
是拋物線外一點(diǎn),連接
,
分別交拋物線于點(diǎn)
,
,且
.
(Ⅰ)若,求點(diǎn)
的軌跡方程;
(Ⅱ)若,求
面積的最小值.
【答案】(Ⅰ);(Ⅱ)
.
【解析】
(Ⅰ)聯(lián)立直線與拋物線,利用韋達(dá)定理、定比分點(diǎn)坐標(biāo)公式、導(dǎo)數(shù)的幾何意義可求得點(diǎn)的橫坐標(biāo)為定值,再根據(jù)點(diǎn)
在拋物線外可得點(diǎn)
的縱坐標(biāo)的范圍,從而可得結(jié)果;
(Ⅱ)由(Ⅰ)和弦長公式求解.
(Ⅰ)設(shè),
,
,
由,得
,
則,(*)
因?yàn)?/span>,所以可設(shè)
,
,
所以由定比分點(diǎn)公式得,
,
將的坐標(biāo)代入拋物線方程,得
,
,
化簡得,
所以為方程
的兩根,
聯(lián)立(*)式得,
解得.
設(shè)過拋物線上點(diǎn)的切線與
平行,
因?yàn)?/span>,所以
,則
,即
,
,
所以點(diǎn)的軌跡方程為
.
(Ⅱ)設(shè)的中點(diǎn)為
,
則,
由(Ⅰ)知,
因?yàn)?/span>,所以
,
又,得
,
又
,
所以
,
顯然當(dāng)時(shí),
取得最小值
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為準(zhǔn)備參加市運(yùn)動(dòng)會(huì),對(duì)本校甲、乙兩個(gè)田徑隊(duì)中名跳高運(yùn)動(dòng)員進(jìn)行了測(cè)試,并用莖葉圖表示出本次測(cè)試
人的跳高成績(單位:
).跳高成績?cè)?/span>
以上(包括
)定義為“合格”,成績?cè)?/span>
以下(不包括
)定義為“不合格”.鑒于乙隊(duì)組隊(duì)晚,跳高成績相對(duì)較弱,為激勵(lì)乙隊(duì)隊(duì)隊(duì),學(xué)校決定只有乙隊(duì)中“合格”者才能參加市運(yùn)動(dòng)會(huì)開幕式旗林隊(duì).
(1)求甲隊(duì)隊(duì)員跳高成績的中位數(shù);
(2)如果用分層抽樣的方法從甲、乙兩隊(duì)所有的運(yùn)動(dòng)員中共抽取人,則
人中“合格”與“不合格”的人數(shù)各為多少;
(3)若從所有“合格”運(yùn)動(dòng)員中選取名,用
表示所選運(yùn)動(dòng)員中能參加市運(yùn)動(dòng)會(huì)開幕式旗林隊(duì)的人數(shù),試求
的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足.
(1)求a1,a2,a3的值;
(2)對(duì)任意正整數(shù)n,an小數(shù)點(diǎn)后第一位數(shù)字是多少?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=(sinx+cosx)2cos(2x+π).
(1)求函數(shù)f(x)的最小正周期;
(2)已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若,且a=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】蜂巢是由工蜂分泌蜂蠟建成的.從正面看,蜂巢口是由許多正六邊形的中空柱狀體連接而成,中空柱狀體的底部是由三個(gè)全等的菱形面構(gòu)成.如圖,在正六棱柱的三個(gè)頂點(diǎn)
處分別用平面
,平面
,平面
截掉三個(gè)相等的三棱錐
,
,
,平面
,平面
,平面
交于點(diǎn)
,就形成了蜂巢的結(jié)構(gòu),如下圖(4)所示,
瑞士數(shù)學(xué)家克尼格利用微積分的方法證明了蜂巢的這種結(jié)構(gòu)是在相同容積下所用材料最省的,英國數(shù)學(xué)家麥克勞林通過計(jì)算得到菱形的一個(gè)內(nèi)角為,即
.以下三個(gè)結(jié)論①
;②
;③
四點(diǎn)共面,正確命題的個(gè)數(shù)為______個(gè);若
,
,
,則此蜂巢的表面積為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)),直線
的參數(shù)方程為
(
為參數(shù)).設(shè)直線
與
的交點(diǎn)為
,當(dāng)
變化時(shí)的點(diǎn)
的軌跡為曲線
.
(1)求出曲線的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,設(shè)射線
的極坐標(biāo)方程為
且
,點(diǎn)
是射線
與曲線
的交點(diǎn),求點(diǎn)
的極徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中有四張卡片,分別寫有“國”、“富”、“民”、“強(qiáng)”四個(gè)字,有放回地從中任取一張卡片,將三次抽取后“國”“富”兩個(gè)字都取到記為事件A,用隨機(jī)模擬的方法估計(jì)事件A發(fā)生的概率,利用電腦隨機(jī)產(chǎn)生整數(shù)0,1,2,3四個(gè)隨機(jī)數(shù),分別代表“國”、“富”、“民”、“強(qiáng)”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取卡片三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):
231 | 232 | 210 | 023 | 122 | 021 | 321 | 220 | 031 |
231 | 103 | 133 | 132 | 001 | 320 | 123 | 130 | 233 |
由此可以估計(jì)事件A發(fā)生的概率為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖的多面體中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中點(diǎn).
(Ⅰ)求證:AB∥平面DEG;
(Ⅱ)求證:BD⊥EG;
(Ⅲ)求多面體ADBEG的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com