日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情

          【題目】在平面直角坐標系中,設動點到兩定點 的距離的比值為的軌跡為曲線

          (Ⅰ)求曲線的方程;

          (Ⅱ)若直線過點,且點到直線的距離為,求直線的方程,并判斷直線與曲線的位置關系.

          【答案】見解析

          【解析】試題分析:(Ⅰ)設為所求曲線上任意一點,由題意得, .又, ,所以,化簡得,即得出曲線的方程;

          Ⅱ)當直線的斜率不存在時,不符合題意.設直線的方程為,因為點到直線的距離為,,解得即得出直線的方程,利用圓心到直線的距離與半徑關系得出直線與曲線的位置關系.

          試題解析:

          (Ⅰ)設為所求曲線上任意一點,由題意得, .又, ,所以,化簡得.故曲線的方程為

          (Ⅱ)當直線的斜率不存在時,不符合題意.設直線的方程為,因為點到直線的距離為,,解得.所以直線的方程為,.因為圓心到直線的距離為 (半徑),所以直線與曲線相交.

          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          【題目】已知直線過坐標原點,的方程為

          (1)當直線的斜率為,與圓相交所得的弦長

          (2)設直線與圓交于兩點,的中點求直線的方程

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】如圖,在平行四邊形ABCD中,AB=a,BC=1,∠BAD=60°,E為線段CD(端點C、D除外)上一動點,將△ADE沿直線AE翻折,在翻折過程中,若存在某個位置使得直線AD與BC垂直,則a的取值范圍是( )

          A.( ,+∞)
          B.( ,+∞)
          C.( +1,+∞)
          D.( +1,+∞)

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】某高速公路隧道內設雙行線公路,其截面由一段圓弧和一個長方形的三邊構成(如圖所示).已知隧道總寬度,行車道總寬度,側墻面高, ,弧頂高

          )建立適當的直角坐標系,求圓弧所在的圓的方程.

          )為保證安全,要求行駛車輛頂部(設為平頂)與隧道頂部在豎直方向上的高度之差至少要有.請計算車輛通過隧道的限制高度是多少.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】拋物線y=ax2+c與x軸交于A、B兩點,頂點為C,點P在拋物線上,且位于x軸下方

          (1)如下圖,若P(1,-3)、B(4,0),① 求該拋物線的解析式;② 若D是拋物線上一點,滿足∠DPO=∠POB,求點D的坐標;

          (2) 如下圖,在圖中的拋物線解析式不變的條件下,已知直線PA、PB與y軸分別交于E、F兩點.當點P運動時,OE+OF是否為定值?若是,試求出該定值;若不是,請說明理由

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】用C(A)表示非空集合A中的元素個數,定義A*B= ,若A={x|x2﹣ax﹣2=0,a∈R},B={x||x2+bx+2|=2,b∈R},且A*B=2,則b的取值范圍(
          A.b≥2 或b≤﹣2
          B.b>2 或b<﹣2
          C.b≥4或b≤﹣4
          D.b>4或b<﹣4

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知橢圓的右焦點為,離心率為.過定點的直線交橢圓于不同的兩點, (點在點, 之間).

          (Ⅰ)求橢圓的方程;

          (Ⅱ)若,求實數的取值范圍;

          Ⅲ)若射線交橢圓于點為原點),求面積的最大值

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知函數, 是函數的導函數,則的圖象大致是( )

          A. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/8f50d3dfba9b485fac00e42a95909498.png] B. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/74ae44978a70424c961e850ed79072da.png]

          C. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/2f113f7ec5294ba0bbd1f66b13f3e152.png] D. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/dbaa9025ccdb497380b769e5396c4c19.png]

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】如圖,直四棱柱的所有棱長均為2, 中點.

          (Ⅰ)求證: 平面

          (Ⅱ)若,求平面與平面所成銳二面角的大小.

          查看答案和解析>>

          同步練習冊答案