【題目】已知正四棱錐的底面邊長和高都為2.現(xiàn)從該棱錐的5個頂點中隨機選取3個點構(gòu)成三角形,設(shè)隨機變量
表示所得三角形的面積.
(1)求概率的值;
(2)求隨機變量的概率分布及其數(shù)學(xué)期望
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了促進我國人口均衡發(fā)展,從2016年1月1日起,全國統(tǒng)一實施全面放開二孩政策,這也是為了重建大國人口觀,重新認(rèn)識人口價值、人口規(guī)律、人口問題,某研究機構(gòu)為了了解人們對全面放開生育二孩政策的態(tài)度,隨機調(diào)查了200人,得到的統(tǒng)計數(shù)據(jù)如下面的不完整的2×2列聯(lián)表所示(單位:人):
支持生育二孩 | 不支持生育二孩 | 合計 | |
男性 | 30 | ||
女性 | 60 | 100 | |
合計 | 70 |
(1)完成2×2列聯(lián)表,并求是否有90%的把握認(rèn)為是否“支持生育二孩”與性別有關(guān)?
(2)現(xiàn)從樣本中的女性中利用分層抽樣的方法抽取5人,再從這5人中隨機選出2人進行深層次的交流,求選出的2人中至少有1人“支持生育二孩”的概率.
參考公式:,其中
.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知O為坐標(biāo)原點,,
,直線AG,BG相交于點G,且它們的斜率之積為
.記點G的軌跡為曲線C.
(1)若射線與曲線C交于點D,且E為曲線C的最高點,證明:
.
(2)直線與曲線C交于M,N兩點,直線AM,AN與y軸分別交于P,Q兩點.試問在x軸上是否存在定點T,使得以PQ為直徑的圓恒過點T?若存在,求出T的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某校冬季長跑活動中,學(xué)校要給獲得一、二等獎的學(xué)生購買獎品,要求花費總額不得超過元.已知一等獎和二等獎獎品的單價分別為
元、
元,一等獎人數(shù)與二等獎人數(shù)的比值不得高于
,且獲得一等獎的人數(shù)不能少于
人,那么下列說法中錯誤的是( )
A.最多可以購買份一等獎獎品
B.最多可以購買份二等獎獎品
C.購買獎品至少要花費元
D.共有種不同的購買獎品方案
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接“五一國際勞動節(jié)”,某商場規(guī)定購買超過6000元商品的顧客可以參與抽獎活動現(xiàn)有甲品牌和乙品牌的掃地機器人作為獎品,從這兩種品牌的掃地機器人中各隨機抽取6臺檢測它們充滿電后的工作時長相關(guān)數(shù)據(jù)見下表(工作時長單位:分)
機器序號 | 1 | 2 | 3 | 4 | 5 | 6 |
甲品牌工作時長/分 | 220 | 180 | 210 | 220 | 200 | 230 |
乙品牌工作時長/分 | 200 | 190 | 240 | 230 | 220 | 210 |
(1)根據(jù)所提供的數(shù)據(jù),計算抽取的甲品牌的掃地機器人充滿電后工作時長的平均數(shù)與方差;
(2)從乙品牌被抽取的6臺掃地機器人中隨機抽出3臺掃地機器人,記抽出的掃地機器人充滿電后工作時長不低于220分鐘的臺數(shù)為,求
的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某外國語學(xué)校舉行的(高中生數(shù)學(xué)建模大賽)中,參與大賽的女生與男生人數(shù)之比為
,且成績分布在
,分?jǐn)?shù)在
以上(含
)的同學(xué)獲獎.按女生、男生用分層抽樣的方法抽取
人的成績作為樣本,得到成績的頻率分布直方圖如圖所示.
(Ⅰ)求的值,并計算所抽取樣本的平均值
(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(Ⅱ)填寫下面的列聯(lián)表,并判斷在犯錯誤的概率不超過
的前提下能否認(rèn)為“獲獎與女生、男生有關(guān)”.
女生 | 男生 | 總計 | |
獲獎 | |||
不獲獎 | |||
總計 | |||
附表及公式:
其中,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了豐富學(xué)生的課外文化生活,某中學(xué)積極探索開展課外文體活動的新途徑及新形式,取得了良好的效果.為了調(diào)查學(xué)生的學(xué)習(xí)積極性與參加文體活動是否有關(guān),學(xué)校對200名學(xué)生做了問卷調(diào)查,列聯(lián)表如下:
參加文體活動 | 不參加文體活動 | 合計 | |
學(xué)習(xí)積極性高 | 80 | ||
學(xué)習(xí)積極性不高 | 60 | ||
合計 | 200 |
已知在全部200人中隨機抽取1人,抽到學(xué)習(xí)積極性不高的學(xué)生的概率為.
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99.9%的把握認(rèn)為學(xué)習(xí)積極性高與參加文體活動有關(guān)?請說明你的理由;
(3)若從不參加文體活動的同學(xué)中按照分層抽樣的方法選取5人,再從所選出的5人中隨機選取2人,求至少有1人學(xué)習(xí)積極性不高的概率.
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,四邊形
是邊長為2的菱形
,
(1)證明:平面平面
;
(2)當(dāng)平面與平面
所成銳二面角的余弦值
,求直線
與平面
所成角正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點為
,直線
與拋物線交于
兩點.
(1)若過點
,且
,求
的斜率;
(2)若,且
的斜率為
,當(dāng)
時,求
在
軸上的截距的取值范圍(用
表示),并證明
的平分線始終與
軸平行.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com