日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知圓錐的頂點(diǎn)為,底面圓心為,半徑為2,母線長為

          1)求該圓錐的體積;

          2)已知為圓錐底面的直徑,為底面圓周上一點(diǎn),且,為線段的中點(diǎn),求異面直線所成的角的大小.

          【答案】1.2.

          【解析】

          1)由題可知,,根據(jù)勾股定理求得,則圓錐的高,再根據(jù)圓錐的體積公式計(jì)算,即可求出圓錐的體積;

          2)法一:聯(lián)結(jié),由的中點(diǎn),為線段的中點(diǎn),根據(jù)三角形中位線的性質(zhì)可得出,所以異面直線所成的角就是直線所成的角,根據(jù)條件得,求得,則為等邊三角形,即,即可得出結(jié)果;

          法二:以為坐標(biāo)原點(diǎn),以軸、軸、軸的正半軸,建立空間直角坐標(biāo)系,求得,,根據(jù)空間向量法求異面直線的夾角公式,即可求得異面直線所成的角.

          1)解:如圖,由題意得,

          中,,

          即該圓錐的高,

          由圓錐的體積公式得:,

          即該圓錐的體積為.

          2)解法1:聯(lián)結(jié),如圖所示,

          由于為圓錐底面的直徑,的中點(diǎn),

          為線段的中點(diǎn),則,

          所以異面直線所成的角就是直線所成的角,

          因?yàn)?/span>,

          所以,,

          中,,

          所以為等邊三角形,即,

          因此異面直線所成的角的大小為.

          解法2:以為坐標(biāo)原點(diǎn),以軸、軸、軸的正半軸,

          建立如圖所示的空間直角坐標(biāo)系,

          可得,,,

          因?yàn)?/span>為線段的中點(diǎn),得,

          所以,

          設(shè)異面直線所成的角為,向量的夾角為,

          ,所以,

          即異面直線所成的角的大小為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,拋物線C)的焦點(diǎn)為

          1)動(dòng)直線lF點(diǎn)且與拋物線C交于M,N兩點(diǎn),點(diǎn)My軸的左側(cè),過點(diǎn)M作拋物線C準(zhǔn)線的垂線,垂足為M1,點(diǎn)E上,且滿足連接并延長交y軸于點(diǎn)D的面積為,求拋物線C的方程及D點(diǎn)的縱坐標(biāo);

          2)點(diǎn)H為拋物線C準(zhǔn)線上任一點(diǎn),過H作拋物線C的兩條切線,,切點(diǎn)為A,B,證明直線過定點(diǎn),并求面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),.

          1)當(dāng)時(shí),求的單調(diào)區(qū)間;

          2)當(dāng)時(shí),記函數(shù),若函數(shù)至少有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對(duì)某兩名高三學(xué)生在連續(xù)9次數(shù)學(xué)測(cè)試中的成績(單位:分)進(jìn)行統(tǒng)計(jì)得到折線圖,下面是關(guān)于這兩位同學(xué)的數(shù)學(xué)成績分析.

          ①甲同學(xué)的成績折線圖具有較好的對(duì)稱性,故平均成績?yōu)?30分;

          ②根據(jù)甲同學(xué)成績折線圖提供的數(shù)據(jù)進(jìn)行統(tǒng)計(jì),估計(jì)該同學(xué)平均成績?cè)趨^(qū)間內(nèi);

          ③乙同學(xué)的數(shù)學(xué)成績與測(cè)試次號(hào)具有比較明顯的線性相關(guān)性,且為正相關(guān);

          ④乙同學(xué)連續(xù)九次測(cè)驗(yàn)成績每一次均有明顯進(jìn)步.

          其中正確的個(gè)數(shù)為( 。

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】平行四邊形中,,,點(diǎn)在邊上,則的最大值為( )

          A. B. C. 0 D. 2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】從某高三年級(jí)男生中隨機(jī)抽取50名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于之間,將測(cè)量結(jié)果按如下方式分成6組:第1,第2,…,第6,如圖是按上述分組方法得到的頻率分布直方圖.

          1)由頻率分布直方圖估計(jì)該校高三年級(jí)男生身高的中位數(shù);

          2)在這50名男生身高不低于的人中任意抽取2人,則恰有一人身高在內(nèi)的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的焦距為2,過點(diǎn).

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)設(shè)橢圓的右焦點(diǎn)為F,定點(diǎn),過點(diǎn)F且斜率不為零的直線l與橢圓交于A,B兩點(diǎn),以線段AP為直徑的圓與直線的另一個(gè)交點(diǎn)為Q,證明:直線BQ恒過一定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C所對(duì)邊的邊長,且C=,a+b=λc(其中λ>1).

          (1)若λ=時(shí),證明:△ABC為直角三角形;

          (2)若·λ2,且c=3,求λ的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知,函數(shù).

          1)討論的單調(diào)性;

          2)若上僅有一個(gè)零點(diǎn),求的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案