【題目】已知函數(shù).
(1)當(dāng)時,求
的最小值;
(2)若函數(shù)在
上存在極值點,求實數(shù)
的取值范圍.
【答案】(1);(2)
.
【解析】
(1)求導(dǎo)后可得,令
,利用導(dǎo)數(shù)可知函數(shù)
恒成立,由此可得函數(shù)
在
上單調(diào)遞減,在
上單調(diào)遞增,進(jìn)而得到最小值;
(2)分及
討論,當(dāng)
時,
無極值;當(dāng)
時,利用導(dǎo)數(shù)可知滿足題意,進(jìn)而得出結(jié)論.
解:(1)由已知得當(dāng)時,
.
令,則
.
當(dāng)時,
;當(dāng)
時,
.
易知函數(shù)在
上單調(diào)遞減,在
上單調(diào)遞增,
所以,所以
,
則當(dāng)時,
;當(dāng)
時,
,
因此在
上單調(diào)遞減,在
上單調(diào)遞增,
所以.
(2)
令.
①當(dāng)時,
.
又因為,
,所以
,
此時在
單調(diào)遞増,所以函數(shù)
無極值.
②當(dāng)時,
,
在
上單調(diào)遞增.
又,
,所以
在
上存在唯一零點,設(shè)為
,
所以當(dāng)時,
,
,
單調(diào)遞減;
當(dāng)時,
,
,
單調(diào)遞增,
所以當(dāng)時,函數(shù)
在
上存在極值點
.
綜上所述,的取值范圍是
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,
是橢圓
的左,右焦點,橢圓上一點
滿足
軸,
,
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過的直線
交橢圓
于
兩點,當(dāng)
的內(nèi)切圓面積最大時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】王老師在做折紙游戲,現(xiàn)有一張邊長為1的正三角形紙片ABC,將點A翻折后恰好落在邊BC上的點F處,折痕為DE,設(shè),
.
(1)求x、y滿足的關(guān)系式;
(2)求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求
的最小值;
(2)若函數(shù)在
上存在極值點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),在以坐標(biāo)原點為極點,
軸的正半軸為極軸的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
.
(1)若直線與曲線
至多只有一個公共點,求實數(shù)
的取值范圍;
(2)若直線與曲線
相交于
,
兩點,且
,
的中點為
,求點
的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在坐標(biāo)原點,焦點在x軸上,它的一個頂點恰好是拋物線的焦點,離心率為
.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過橢圓C的右焦點F作直線l交橢圓C于A、B兩點,交y軸于M點,若,
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體的棱長為
,動點
在對角線
上,過點
作垂直于
的平面
,記平面
截正方體得到的截面多邊形(含三角形)的周長為
,設(shè)
,
.
(1)下列說法中,正確的編號為______.
①截面多邊形可能為六邊形;②;③函數(shù)
的圖象關(guān)于
對稱.
(2)當(dāng)時,三棱錐
的外接球的表面積為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點
分別是橢圓
的上、下頂點,線段
長為
,橢圓的離心率為
.
(1)求該橢圓的方程;
(2)已知過點的直線
與橢圓交于
兩點,直線
與直線
交于點
.
①若直線的斜率為
,求點
的坐標(biāo);
②求證點在一條定直線上,并寫出該直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國在北宋1084年第一次印刷出版了《算經(jīng)十書》,即賈憲的《黃帝九章算法細(xì)草》,劉益的《議古根源》,秦九韶的《數(shù)書九章》,李冶的《測圓海鏡》和《益古演段》,楊輝的《詳解九章算法》、《日用算法》和《楊輝算法》,朱世杰的《算學(xué)啟蒙》和《四元玉鑒》.這些書中涉及的很多方面都達(dá)到古代數(shù)學(xué)的高峰,其中一些“算法”如開立方和開四次方也是當(dāng)時世界數(shù)學(xué)的高峰.某圖書館中正好有這十本書現(xiàn)在小明同學(xué)從這十本書中任借兩本閱讀,那么他取到的書的書名中有“算”字的概率為( )
A.B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com