日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 雙曲線的左、右焦點(diǎn)分別為,是雙曲線上一點(diǎn),的中點(diǎn)
          軸上,線段的長(zhǎng)為,則該雙曲線的離心率為
          A.B.C.D.
          D
          由題意可知軸,所以.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,已知橢圓C的中心在原點(diǎn)O,焦點(diǎn)在軸上,長(zhǎng)軸長(zhǎng)是短軸
          長(zhǎng)的2倍,且經(jīng)過(guò)點(diǎn)M. 平行于OM的直線軸上的截距為并交橢
          圓C于A、B兩個(gè)不同點(diǎn).
          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)求m的取值范圍; 
          (3)求證:直線MA、MB與x軸始終圍成一個(gè)等腰三角形.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.
          (1)求橢圓C的方程;
          (2)設(shè),是橢圓上關(guān)于軸對(duì)稱的任意兩個(gè)不同的點(diǎn),連結(jié)交橢圓于另一點(diǎn),求直線的斜率的取值范圍;
          (3)在(2)的條件下,證明直線軸相交于定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          橢圓上一點(diǎn)到焦點(diǎn)的距離為2,的中點(diǎn),則等于(  )
          A.2B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的兩倍,且過(guò)點(diǎn)
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)若直線與橢圓交于不同的兩點(diǎn),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本小題12分)離心率為的橢圓的左、右焦點(diǎn)分別為、是坐標(biāo)原點(diǎn).
          (1)求橢圓的方程;
          (2)若直線交于相異兩點(diǎn),且,求.(其中是坐標(biāo)原點(diǎn))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓的中心在原點(diǎn),焦點(diǎn)為F1,F(xiàn)2(0,),且離心率。
          (I)求橢圓的方程;
          (II)直線l(與坐標(biāo)軸不平行)與橢圓交于不同的兩點(diǎn)A、B,且線段AB中點(diǎn)的橫坐標(biāo)
          ,求直線l的斜率的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          以C:的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn)的橢圓的方程為          

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          橢圓的兩個(gè)焦點(diǎn)F1、F2,點(diǎn)P在橢圓C上,且P F1⊥F1F2,| P F1|=,| P F2|=。
          (I)求橢圓C的方程;
          (II)若直線L過(guò)圓x2+y2+4x-2y=0的圓心M交橢圓于A、B兩點(diǎn),且A、B關(guān)于點(diǎn)M對(duì)稱,求直線L的方程。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案