日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知a∈R,函數(shù)f(x)= +alnx﹣3x,g(x)=﹣x2+8x,且x=1是函數(shù)f(x)的極大值點(diǎn).
          (1)求a的值.
          (2)如果函數(shù)y=f(x)和函數(shù)y=g(x)在區(qū)間(b,b+1)上均為增函數(shù),求實(shí)數(shù)b的取值范圍.

          【答案】
          (1)解:因?yàn)楹瘮?shù) (x>0)

          所以f′(x)=x+ ﹣3,(x>0),

          又因?yàn)閤=1是函數(shù)f(x)的極大值點(diǎn).

          所以 ,解得a=2

          檢驗(yàn):當(dāng)a=2時(shí), (x>0)

          當(dāng)x∈(0,1),(2,+∞)時(shí),f′(x)>0,當(dāng)x∈(1,2)時(shí),f′(x)<0,

          所以x=1是函數(shù)f(x)的極大值點(diǎn),a=2符合題意


          (2)解:g(x)=﹣x2+8x=﹣(x﹣4)2+16

          所以函數(shù)g(x)的單調(diào)遞增區(qū)間是(4,+∞)

          又由(1)可知函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,1),(2,+∞)

          所以依題意得

          解得 b=0或 2≤b≤3

          所以實(shí)數(shù)b的取值范圍是{0}∪[2,3]


          【解析】(1)因?yàn)楹瘮?shù) (x>0),求出導(dǎo)函數(shù),利用x=1是函數(shù)f(x)的極大值點(diǎn).求出a.然后驗(yàn)證即可.(2)求出函數(shù)g(x)的單調(diào)遞增區(qū)間.又由(1)可知函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,1),(2,+∞),列出不等式組,求解b 的范圍即可.
          【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)a>0且a≠1,函數(shù)y=a2x+2ax﹣1在[﹣1,1]的最大值是14,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知常數(shù),在矩形ABCD中, ,OAB的中點(diǎn),點(diǎn)E、F、G分別在BC、CDDA上移動,且PGEOF的交點(diǎn)(如圖),問是否存在兩個(gè)定點(diǎn),使P到這兩點(diǎn)的距離的和為定值?若存在,求出這兩點(diǎn)的坐標(biāo)及此定值;若不存在,請說明理由

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知 中, 分別為兩腰上的高、求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓C:x2+y2+2x+a=0上存在兩點(diǎn)關(guān)于直線l:mx+y+1=0對稱. (Ⅰ)求m的值;
          (Ⅱ)直線l與圓C交于A,B兩點(diǎn), =﹣3(O為坐標(biāo)原點(diǎn)),求圓C的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為調(diào)查了解某省屬師范大學(xué)師范類畢業(yè)生參加工作后,從事的工作與教育是否有關(guān)的情況,該校隨機(jī)調(diào)查了該校80位性別不同的2016年師范類畢業(yè)大學(xué)生,得到具體數(shù)據(jù)如下表:

          與教育有關(guān)

          與教育無關(guān)

          合計(jì)

          30

          10

          40

          35

          5

          40

          合計(jì)

          65

          15

          80

          1)能否在犯錯(cuò)誤的概率不超過5%的前提下,認(rèn)為師范類畢業(yè)生從事與教育有關(guān)的工作與性別有關(guān)?

          參考公式:).

          附表:

          0.50

          0.40

          0.25

          0.15

          0.10

          0.05

          0.025

          0.010

          0.455

          0.708

          1.323

          2.072

          2.706

          3.841

          5.023

          6.635

          2)求這80位師范類畢業(yè)生從事與教育有關(guān)工作的頻率;

          3)以(2)中的頻率作為概率.該校近幾年畢業(yè)的2000名師范類大學(xué)生中隨機(jī)選取4名,記這4名畢業(yè)生從事與教育有關(guān)的人數(shù)為,求的數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知y=f(x)+x是偶函數(shù),且f(2)=lg32+log416+6lg +lg ,若g(x)=f(x)+1,則g(﹣2)=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=log3(ax2+3x+4)
          (1)若f(1)<2,求a的取值范圍
          (2)若a=1,求函數(shù)f(x)的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)f(x)是定義在(﹣1,+∞)內(nèi)的增函數(shù),且f(xy)=f(x)+f(y)若f(3)=1且f(a)>f(a﹣1)+2
          求:
          (1)f(9)的值,
          (2)求a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案