日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】求所有的實(shí)數(shù)組(a、b、c),使得對(duì)任何整數(shù)n,都有.其中,表示不超過實(shí)數(shù)x的最大整數(shù).

          【答案】見解析

          【解析】

          首先證明:“使對(duì)任何整數(shù)n,都有”等價(jià)于“a、b中至少有一個(gè)為整數(shù),且c=a+b”.

          一方面,若a、b中至少有一個(gè)為整數(shù),且c=a+b,則不妨設(shè)a為整數(shù).那么,對(duì)任何整數(shù)n,na為整數(shù).所以,.

          于是, .

          另一方面,若對(duì)任何整數(shù)n,都有.則分別取n=1、-1,

          兩式相加得.

          又對(duì)任何實(shí)數(shù)x,

          于是,如果a、b都不是整數(shù),則

          ,矛盾.

          所以,a、b中至少有一個(gè)為整數(shù).

          不妨設(shè)a為整數(shù),那么,對(duì)任何整數(shù)n,na為整數(shù),于是,.

          則對(duì)任何整數(shù)n,.

          .

          于是,.

          綜上,所求的實(shí)數(shù)組,

          其中,m、n為任意整數(shù),t為任意實(shí)數(shù).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一個(gè)半徑為r的小球與一個(gè)半徑為R的大球在一個(gè)內(nèi)壁棱長(zhǎng)為l的正四面體容器內(nèi)向各個(gè)方向自由運(yùn)動(dòng),則該小球永遠(yuǎn)不可能接觸到的容器內(nèi)壁的面積是_________。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(本小題滿分12分)

          如圖,四棱錐的底面為菱形,平面,,

          分別為的中點(diǎn),

          )求證:平面平面

          )求平面與平面所成的銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】袋中裝著10個(gè)外形完全相同的小球,其中標(biāo)有數(shù)字1的小球有1個(gè),標(biāo)有數(shù)字2的小球有2個(gè),標(biāo)有數(shù)字3的小球有3個(gè),標(biāo)有數(shù)字4的小球有4個(gè).

          現(xiàn)從袋中任取3個(gè)小球,按3個(gè)小球上最大數(shù)字的8倍計(jì)分,每個(gè)小球被取出的可能性都相等,用表示取出的三個(gè)小球上的最大數(shù)字,求:

          1)取出的3個(gè)小球上的數(shù)字互不相同的概率;

          2)隨機(jī)變量的分布列;

          3)計(jì)算介于20分到40分之間的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,銳角的三邊互不相等,其垂心為,是邊的中點(diǎn),直線,的外接圓交的外接圓于,直線的外接圓、的外接圓分別交于證明:

          (1)平分;

          (2)三線共點(diǎn)。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線的頂點(diǎn)在原點(diǎn),過點(diǎn)A(-4,4)且焦點(diǎn)在x軸.

          (1)求拋物線方程;

          (2)直線l過定點(diǎn)B(-1,0)與該拋物線相交所得弦長(zhǎng)為8,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】定義:如果函數(shù)的導(dǎo)函數(shù)為,在區(qū)間上存在,使得,則稱為區(qū)間上的“雙中值函數(shù)“已知函數(shù)上的“雙中值函數(shù)“,則實(shí)數(shù)m的取值范圍是  

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖是某公司一種產(chǎn)品的日銷售量(單位:百件)關(guān)于日最高氣溫(單位:)的散點(diǎn)圖.

          數(shù)據(jù):

          13

          15

          19

          20

          21

          26

          28

          30

          18

          36

          1)請(qǐng)?zhí)蕹唤M數(shù)據(jù),使得剩余數(shù)據(jù)的線性相關(guān)性最強(qiáng),并用剩余數(shù)據(jù)求日銷售量關(guān)于日最高氣溫的線性回歸方程;

          2)根據(jù)現(xiàn)行《重慶市防暑降溫措施管理辦法》.若氣溫超過36度,職工可享受高溫補(bǔ)貼.已知某日該產(chǎn)品的銷售量為53.1,請(qǐng)用(1)中求出的線性回歸方程判斷該公司員工當(dāng)天是否可享受高溫補(bǔ)貼?

          附:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如果既約分?jǐn)?shù)滿足、為正整數(shù)),則稱牛分?jǐn)?shù)”.現(xiàn)將所有的牛分?jǐn)?shù)按遞增順序排成一個(gè)數(shù)列,稱為牛數(shù)列”.證明對(duì)于牛數(shù)列中的任兩個(gè)相鄰項(xiàng),都滿足

          查看答案和解析>>

          同步練習(xí)冊(cè)答案