(1)已知點(diǎn)和
,過點(diǎn)
的直線
與過點(diǎn)
的直線
相交于點(diǎn)
,設(shè)直線
的斜率為
,直線
的斜率為
,如果
,求點(diǎn)
的軌跡;
(2)用正弦定理證明三角形外角平分線定理:如果在中,
的外角平分線
與邊
的延長線相交于點(diǎn)
,則
.
(1)的軌跡是以
為頂點(diǎn),焦點(diǎn)在
軸的橢圓(除長軸端點(diǎn));(2)證明詳見解析.
解析試題分析:(1)本題屬直接法求軌跡方程,即根據(jù)題意設(shè)動(dòng)點(diǎn)的坐標(biāo),求出
,列出方程,化簡整理即可;(2)設(shè)
,在
中,由正弦定理得
,同時(shí)在在
中,由正弦定理得
,然后根據(jù)
,進(jìn)而得到
,最后將得到的兩等式相除即可證明.
試題解析:(1)設(shè)點(diǎn)坐標(biāo)為
,則
2分
整理得 4分
所以點(diǎn)的軌跡是以
為頂點(diǎn),焦點(diǎn)在
軸的橢圓(除長軸端點(diǎn)) 6分
(2)證明:設(shè)
在中,由正弦定理得
① 8分
在中,由正弦定理得
,而
所以 ② 10分
①②兩式相比得 12分.
考點(diǎn):1.軌跡方程的求法;2.正弦定理的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
己知橢圓C:(a>b>0)的右焦點(diǎn)為F(1,0),點(diǎn)A(2,0)在橢圓C上,斜率為1的直線
與橢圓C交于不同兩點(diǎn)M,N.
(1)求橢圓C的方程;
(2)設(shè)直線過點(diǎn)F(1,0),求線段
的長;
(3)若直線過點(diǎn)(m,0),且以
為直徑的圓恰過原點(diǎn),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線,點(diǎn)
,過
的直線
交拋物線
于
兩點(diǎn).
(1)若,拋物線
的焦點(diǎn)與
中點(diǎn)的連線垂直于
軸,求直線
的方程;
(2)設(shè)為小于零的常數(shù),點(diǎn)
關(guān)于
軸的對稱點(diǎn)為
,求證:直線
過定點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
拋物線在點(diǎn)
,
處的切線垂直相交于點(diǎn)
,直線
與橢圓
相交于
,
兩點(diǎn).
(1)求拋物線的焦點(diǎn)
與橢圓
的左焦點(diǎn)
的距離;
(2)設(shè)點(diǎn)到直線
的距離為
,試問:是否存在直線
,使得
,
,
成等比數(shù)列?若存在,求直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知點(diǎn)
,
是動(dòng)點(diǎn),且
的三邊所在直線的斜率滿足
.
(1)求點(diǎn)的軌跡
的方程;
(2)若是軌跡
上異于點(diǎn)
的一個(gè)點(diǎn),且
,直線
與
交于點(diǎn)
,問:是否存在點(diǎn)
,使得
和
的面積滿足
?若存在,求出點(diǎn)
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:的左、右焦點(diǎn)和短軸的一個(gè)端點(diǎn)構(gòu)成邊長為4的正三角形.
(1)求橢圓C的方程;
(2)過右焦點(diǎn)的直線
與橢圓C相交于A、B兩點(diǎn),若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓E的中心是原點(diǎn)O,其右焦點(diǎn)為F(2,0),過x軸上一點(diǎn)A(3,0)作直線與橢圓E相交于P,Q兩點(diǎn),且
的最大值為
.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè),過點(diǎn)P且平行于y軸的直線與橢圓E相交于另一點(diǎn)M,試問M,F,Q是否共線,若共線請證明;反之說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知坐標(biāo)平面內(nèi):
,
:
.動(dòng)點(diǎn)P與
外切與
內(nèi)切.
(1)求動(dòng)圓心P的軌跡的方程;
(2)若過D點(diǎn)的斜率為2的直線與曲線交于兩點(diǎn)A、B,求AB的長;
(3)過D的動(dòng)直線與曲線交于A、B兩點(diǎn),線段中點(diǎn)為M,求M的軌跡方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com