在平面直角坐標系中,已知點
,
是動點,且
的三邊所在直線的斜率滿足
.
(1)求點的軌跡
的方程;
(2)若是軌跡
上異于點
的一個點,且
,直線
與
交于點
,問:是否存在點
,使得
和
的面積滿足
?若存在,求出點
的坐標;若不存在,說明理由.
(1)(
且
),(2)
解析試題分析:(1)點的軌跡的方程,就是找出點
橫坐標與縱坐標的關系式,而條件
中只有點
為未知,可直接利用斜率公式
化簡,得點
的軌跡的方程為
,求出軌跡的方程后需結合變形過程及觀察圖像進行去雜,本題中分母不為零是限制條件,(2)本題難點在于對條件的轉化,首先條件
說明的是
,其次條件
揭示的是
,兩者結合轉化為條件
,到此原題就轉化為:已知斜率為
的過點
直線被拋物線
截得弦長為
,求點
的坐標.
試題解析:
(1)設點為所求軌跡上的任意一點,則由
得,
,整理得軌跡
的方程為
(
且
). 3分
(2):學設由
可知直線
,
則,故
,即
, 5分
直線OP方程為: ①;直線QA的斜率為:
,
∴直線QA方程為:,即
②
聯(lián)立①②,得,∴點M的橫坐標為定值
. 8分
由,得到
,因為
,所以
,
由,得
,∴
的坐標為
.
∴存在點P滿足,
的坐標為
. 10分
考點:軌跡方程,直線與拋物線位置關系
科目:高中數(shù)學 來源: 題型:解答題
設橢圓M:=1(a>
)的右焦點為F1,直線l:x=
與x軸交于點A,若
1=2
(其中O為坐標原點).
(1)求橢圓M的方程;
(2)設P是橢圓M上的任意一點,EF為圓N:x2+(y-2)2=1的任意一條直徑(E,F為直徑的兩個端點),求·
的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設橢圓的方程為 ,斜率為1的直線不經(jīng)過原點
,而且與橢圓相交于
兩點,
為線段
的中點.
(1)問:直線與
能否垂直?若能,求
之間滿足的關系式;若不能,說明理由;
(2)已知為
的中點,且
點在橢圓上.若
,求
之間滿足的關系式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(1)已知點和
,過點
的直線
與過點
的直線
相交于點
,設直線
的斜率為
,直線
的斜率為
,如果
,求點
的軌跡;
(2)用正弦定理證明三角形外角平分線定理:如果在中,
的外角平分線
與邊
的延長線相交于點
,則
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系中,已知點,點
在直線
:
上運動,過點
與
垂直的直線和線段
的垂直平分線相交于點
.
(1)求動點的軌跡
的方程;
(2)過(1)中的軌跡上的定點
作兩條直線分別與軌跡
相交于
,
兩點.試探究:當直線
,
的斜率存在且傾斜角互補時,直線
的斜率是否為定值?若是,求出這個定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的左、右焦點分別為
,且
,長軸的一個端點與短軸兩個端點組成等邊三角形的三個頂點.
(1)求橢圓方程;
(2)設橢圓與直線相交于不同的兩點M、N,又點
,當
時,求實數(shù)m的取值范圍,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com