日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓C:=1(a>b>0)的離心率為,過(guò)右焦點(diǎn)F的直線l與C相交于A、B兩點(diǎn),當(dāng)l的斜率為1時(shí),坐標(biāo)原點(diǎn)O到l的距離為
          (Ⅰ)求a,b的值;
          (Ⅱ)C上是否存在點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時(shí),有成立?若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說(shuō)明理由.
          (Ⅰ);(Ⅱ)P(,±),x±y-=0.

          試題分析:(Ⅰ) 先利用點(diǎn)到直線的距離公式求,再利用離心率求,最后利用參數(shù)的關(guān)系求;(Ⅱ)設(shè)點(diǎn)利用方程組消元后得根與系數(shù)關(guān)系,然后代入題中條件化簡(jiǎn)可求.
          試題解析:(Ⅰ) 設(shè)F(c,0),當(dāng)l的斜率為1時(shí),其方程為x-y-c=0,
          ∴O到l的距離為,
          由已知,得,∴c=1.
          由e=,得a=,b=.              4分
          (Ⅱ)假設(shè)C上存在點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時(shí),有成立,
          設(shè)A(x1,y1),B(x2,y2),則P(x1+x2,y1+y2).
          由(Ⅰ),知C的方程為=1.
          由題意知,l的斜率一定不為0,故不妨設(shè)l:x=ty+1.
          ,消去x并化簡(jiǎn)整理,得(2t2+3)y2+4ty-4=0.
          由韋達(dá)定理,得y1+y2=-,
          ∴x1+x2=ty1+1+ty2+1=t(y1+y2)+2=-+2=
          ∴P(,-).
          ∵點(diǎn)P在C上,∴=1,
          化簡(jiǎn)整理,得4t4+4t2-3=0,即(2t2+3)(2t2-1)=0,解得t2
          當(dāng)t=時(shí),P(,-),l的方程為x-y-=0;
          當(dāng)t=-時(shí),P(,),l的方程為x+y-=0.
          故C上存在點(diǎn)P(,±),使成立,此時(shí)l的方程為x±y-=0.  13分
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          拋物線M: 的準(zhǔn)線過(guò)橢圓N: 的左焦點(diǎn),以坐標(biāo)原點(diǎn)為圓心,以t(t>0)為半徑的圓分別與拋物線M在第一象限的部分以及y軸的正半軸相交于點(diǎn)A與點(diǎn)B,直線AB與x軸相交于點(diǎn)C.

          (1)求拋物線M的方程.
          (2)設(shè)點(diǎn)A的橫坐標(biāo)為x1,點(diǎn)C的橫坐標(biāo)為x2,曲線M上點(diǎn)D的橫坐標(biāo)為x1+2,求直線CD的斜率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,在平面直角坐標(biāo)系中,、分別是橢圓的頂點(diǎn),過(guò)坐標(biāo)原點(diǎn)的直線交橢圓于、兩點(diǎn),其中在第一象限.過(guò)軸的垂線,垂足為.連接,并延長(zhǎng)交橢圓于點(diǎn).設(shè)直線的斜率為

          (Ⅰ)當(dāng)直線平分線段時(shí),求的值;
          (Ⅱ)當(dāng)時(shí),求點(diǎn)到直線的距離;
          (Ⅲ)對(duì)任意,求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線相切,直線與橢圓C相交于A、B兩點(diǎn).
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)求的取值范圍;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓的左、右焦點(diǎn)分別為、,P為橢圓 上任意一點(diǎn),且的最小值為.
          (1)求橢圓的方程;
          (2)動(dòng)圓與橢圓相交于A、B、C、D四點(diǎn),當(dāng)為何值時(shí),矩形ABCD的面積取得最大值?并求出其最大面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知為橢圓的左,右焦點(diǎn),為橢圓上的動(dòng)點(diǎn),且的最大值為1,最小值為-2.
          (I)求橢圓的方程;
          (II)過(guò)點(diǎn)作不與軸垂直的直線交該橢圓于兩點(diǎn),為橢圓的左頂點(diǎn)。試判斷的大小是否為定值,并說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓的兩個(gè)焦點(diǎn)分別為,且,點(diǎn)在橢圓上,且的周長(zhǎng)為6.
          (I)求橢圓的方程;
          (II)若點(diǎn)的坐標(biāo)為,不過(guò)原點(diǎn)的直線與橢圓相交于兩點(diǎn),設(shè)線段的中點(diǎn)為,點(diǎn)到直線的距離為,且三點(diǎn)共線.求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          設(shè)F1、F2是橢圓E:的左、右焦點(diǎn),P為直線上一點(diǎn),△F2PF1是底角為30°的等腰三角形,則E的離心率為(  )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          橢圓的離心率;該命題類(lèi)比到雙曲線中,一個(gè)真命題是:
          雙曲線的離心率                .

          查看答案和解析>>

          同步練習(xí)冊(cè)答案