日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知方程只有一個實(shí)數(shù)根,則的取值范圍是(

          A.B.C.D.

          【答案】A

          【解析】

          ,則原方程轉(zhuǎn)化成,令,顯然,問題轉(zhuǎn)化成函數(shù)上只有一個零點(diǎn)1,求導(dǎo)后再利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,由此可得答案.

          解:令,則原方程轉(zhuǎn)化成,即,

          ,顯然,

          問題轉(zhuǎn)化成函數(shù)上只有一個零點(diǎn)1,

          ,則單調(diào)遞增,,此時符合題意;

          ,則,單調(diào)遞增,,此時符合題意;

          ,記,

          則函數(shù)開口向下,對稱軸,過,,

          當(dāng)時,單調(diào)遞減,,此時符合題意;

          當(dāng)時,設(shè)有兩個不等實(shí)根,,

          ,對稱軸,所以

          單調(diào)遞減,單調(diào)遞增,單調(diào)遞增,

          由于,所以,

          ,

          ,所以

          結(jié)合零點(diǎn)存在性定理可知,函數(shù)存在一個零點(diǎn),不符合題意;

          綜上,符合題意的的取值范圍是,

          故選:A

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的短軸端點(diǎn)為,點(diǎn)是橢圓上的動點(diǎn),且不與,重合,點(diǎn)滿足.

          (Ⅰ)求動點(diǎn)的軌跡方程;

          (Ⅱ)求四邊形面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在數(shù)學(xué)中,布勞威爾不動點(diǎn)定理是拓?fù)鋵W(xué)里一個非常重要的不動點(diǎn)定理,它可應(yīng)用到有限維空間,并構(gòu)成一般不動點(diǎn)定理的基石.布勞威爾不動點(diǎn)定理得名于荷蘭數(shù)學(xué)家魯伊茲·布勞威爾(L.E. J. Brouwer),簡單的講就是對于滿足一定條件的連續(xù)函數(shù),存在一個點(diǎn),使得,那么我們稱該函數(shù)為不動點(diǎn)函數(shù),下列為不動點(diǎn)函數(shù)的是(

          A.B.

          C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在五面體中,四邊形為矩形,為等邊三角形,且平面平面.

          1)證明:平面平面

          2)若,求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)當(dāng)時,求的極值;

          2)當(dāng)時,討論的單調(diào)性;

          3)若對任意的,,恒有成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】中國武漢于20191018日至20191027日成功舉辦了第七屆世界軍人運(yùn)動會.來自109個國家的9300余名運(yùn)動員同臺競技.經(jīng)過激烈的角逐,獎牌榜的前3名如下:

          國家

          金牌

          銀牌

          銅牌

          獎牌總數(shù)

          中國

          133

          64

          42

          239

          俄羅斯

          51

          53

          57

          161

          巴西

          21

          31

          36

          88

          某數(shù)學(xué)愛好者采用分層抽樣的方式,從中國和巴西獲得金牌選手中抽取了22名獲獎代表.從這22名中隨機(jī)抽取3人, 則這3人中中國選手恰好1人的概率為(

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形ABCD與BDEF均為菱形,∠DAB=∠DBF=60°,且FA=FC.

          (Ⅰ)求證:AC⊥平面BDEF;

          (Ⅱ)求證:FC∥平面EAD;

          (Ⅲ)求二面角A﹣FC﹣B的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在三棱錐A-BCD中,平面ABC丄平面ADC, ADAC,AD=AC, ,若此三棱錐的外接球表面積為,則三棱錐A-BCD體積的最大值為(

          A.7B.12C.6D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某學(xué)校為了了解該校某年級學(xué)生的閱讀量(分鐘),隨機(jī)抽取了名學(xué)生調(diào)查一天的閱讀時間,統(tǒng)計結(jié)果如下圖表所示:

          組號

          分組

          男生人數(shù)

          男生人數(shù)占本組人數(shù)的頻率

          頻率分布直方圖

          1

          5

          0.5

          2

          18

          0.9

          3

          27

          0.9

          4

          0.36

          5

          3

          0.2

          1)求出的值并估計該校學(xué)生一天的人均閱讀時間;

          2)一天的閱讀時間不少于35分鐘稱為喜好閱讀者”.根據(jù)以上數(shù)據(jù),完成下面的列聯(lián)表,并回答能否在犯錯誤的概率不超過0.05的前提下認(rèn)為喜好閱讀者性別有關(guān)?

          喜好閱讀者

          非喜好閱讀者

          合計

          男生

          女生

          合計

          附:(其中為樣本容量).

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          同步練習(xí)冊答案