【題目】在“新零售”模式的背景下,某大型零售公司推廣線下分店,計劃在S市的A區(qū)開設分店,為了確定在該區(qū)開設分店的個數(shù),該公司對該市已開設分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記x表示在各區(qū)開設分店的個數(shù),y表示這個x個分店的年收入之和.
(1)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合y與x的關(guān)系,求y關(guān)于x的線性回歸方程
(2)假設該公司在A區(qū)獲得的總年利潤z(單位:百萬元)與x,y之間的關(guān)系為,請結(jié)合(1)中的線性回歸方程,估算該公司應在A區(qū)開設多少個分店時,才能使A區(qū)平均每個分店的年利潤最大?
(參考公式:,其中
,
)
【答案】(1);(2)該公司應開設4個分店時,在該區(qū)的每個分店的平均利潤最大
【解析】
(1)由表中數(shù)據(jù)先求得.再結(jié)合公式分別求得
,即可得y關(guān)于x的線性回歸方程.
(2)將(1)中所得結(jié)果代入中,進而表示出每個分店的平均利潤,結(jié)合基本不等式即可求得最值及取最值時自變量的值.
(1)由表中數(shù)據(jù)和參考數(shù)據(jù)得:
,
,
因而可得,
,
再代入公式計算可知,
∴,
∴.
(2)由題意,可知總收入的預報值與x之間的關(guān)系為:
,
設該區(qū)每個分店的平均利潤為t,則,
故t的預報值與x之間的關(guān)系為
,
當且僅當時取等號,即
或
(舍)
則當時,
取到最大值,
故該公司應開設4個分店時,在該區(qū)的每個分店的平均利潤最大.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象關(guān)于原點對稱,其中
為常數(shù).
(1)求的值;
(2)當時,
恒成立,求實數(shù)
的取值范圍;
(3)若關(guān)于的方程
在
上有解,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C:為參數(shù))和定點
,
,
是曲線C的左,右焦點.
(Ⅰ)求經(jīng)過點且垂直于直線
的直線
的參數(shù)方程;
(Ⅱ)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,求直線
的極坐標方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學高一年級共8個班,現(xiàn)從高一年級選10名同學組成社區(qū)服務小組,其中高一(1)班選取3名同學,其它各班各選取1名同學.現(xiàn)從這10名同學中隨機選取3名同學,到社區(qū)老年中心參加“尊老愛老”活動(每位同學被選到的可能性相同).
(1)求選出的3名同學來自不同班級的概率;
(2)設X為選出同學中高一(1)班同學的人數(shù),求隨機變量X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),若存在實數(shù)對
,使得等式
對定義域中的任意
都成立,則稱函數(shù)
是“
型函數(shù)”.
(1)若是“
型函數(shù)”,且
,求滿足條件的實數(shù)對
;
(2)已知函數(shù).函數(shù)
是“
型函數(shù)”,對應的實數(shù)對
為
,當
時,
.若對任意
時,都存在
,使得
,求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
.
(1)設函數(shù),討論函數(shù)
在區(qū)間
內(nèi)的零點個數(shù);
(2)若對任意,總存在
,使得
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】原命題:“,
為兩個實數(shù),若
,則
,
中至少有一個不小于1”,下列說法錯誤的是( )
A. 逆命題為:若,
中至少有一個不小于1,則
,為假命題
B. 否命題為:若,則
,
都小于1,為假命題
C. 逆否命題為:若,
都小于1,則
,為真命題
D. “”是“
,
中至少有一個不小于1”的必要不充分條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為了研究期中考試前學生所做數(shù)學模擬試題的套數(shù)與考試成績的關(guān)系,統(tǒng)計了五個班做的模擬試卷套數(shù)量及期中考試的平均分如下:
套(x) | 7 | 6 | 6 | 5 | 6 |
數(shù)學平均分(y) | 125 | 120 | 110 | 100 | 115 |
(Ⅰ) 若x與y成線性相關(guān),則某班做了8套模擬試題,預計平均分為多少?
(2)期中考試對學生進行獎勵,考入年級前200名,獲一等獎學金500元;考入年級201—500 名,獲二等獎學金300元;考入年級501名以后的學生生將不能獲得獎學金。甲、乙兩名學生獲一等獎學金的概率均為,獲二等獎學金的概率均為
,.若甲、乙兩名學生獲得每個等級的獎學金是相互獨立的,求甲、乙兩名學生所獲得獎學金總金額X 的分布列及數(shù)學期望。
附: ,
。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面
是矩形,
垂直于底面
,
,點
為線段
(不含端點)上一點.
(1)當是線段
的中點時,求
與平面
所成角的正弦值;
(2)已知二面角的正弦值為
,求
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com